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Abstract: We developed a biogeochemical and carbon model (JCOPE_EC) coupled with an operational
ocean model for the North Western Pacific. JCOPE_EC represents ocean acidification indices on
the background of the risks due to ocean acidification and our model experiences. It is an off-line
tracer model driven by a high-resolution regional ocean general circulation model (JCOPE2M).
The results showed that the model adequately reproduced the general patterns in the observed
data, including the seasonal variability of chlorophyll-a, dissolved inorganic nitrogen/phosphorus,
dissolved inorganic carbon, and total alkalinity. We provide an overview of this system and the results
of the model validation based on the available observed data. Sensitivity analysis using fixed values
for temperature, salinity, dissolved inorganic carbon and total alkalinity helped us identify which
variables contributed most to seasonal variations in the ocean acidification indices, pH and Ωarg.
The seasonal variation in the pHinsitu was governed mainly by balances of the change in temperature
and dissolved inorganic carbon. The seasonal increase in Ωarg from winter to summer was governed
mainly by dissolved inorganic carbon levels.

Keywords: biogeochemical model; carbon; NPZDC; North Western Pacific; ocean acidification; JCOPE;
pH; aragonite saturation

1. Introduction

Ocean acidification poses a serious risk to marine organisms and ecosystems, including finfish and
coral reefs in subtropical regions, and species or groups of organisms in polar regions [1–5]. The effects
of ocean acidity have previously been reported and the effects of acidification are predicted to increase,
with great risks to marine organisms [2,4–7]. The global economic loss of organisms from ocean
acidification has been estimated at $24 billion, $0.7 billion, $37 billion, $65 billion, and $30–375 billion
for molluscs, echinoderms, crustaceans, finfish, and corals, respectively. Some organisms including
molluscs and echinoderms may become locally extinct, and corals will be damaged by the combined
effects of global warming and ocean acidification, which will reduce calcification, increase bio-erosion,
and have synergistic effects [8]. All organisms except echinoderms could be seriously affected, and
substantial economic losses are likely [8]. Therefore, these issues can no longer be ignored, and urgent
action is necessary.
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The levels of ocean acidification are evaluated using parameters such as the pH and/or the aragonite
saturation (Ωarg). However, there are limited observed data for pH and Ωarg, so it is difficult to assess
the current status of ocean acidification both locally and globally [3,9]. This situation is unlikely to
change even if new automatic monitoring systems, such as biological profiling floats [10], are established
and operational monitoring, using volunteer observing ship (VOS) pCO2 transects [11,12], increases.

Numerical model simulations are important tools that support the interpretation of observed
data at the required spatial and temporal scales in a dynamically consistent manner, and are used
to characterize the underlying physical–biological processes [13–17]. The term ‘modeling’ describes
various processes including those associated with nitrate, phytoplankton, zooplankton, and detritus
(NPZD processes), which are connected to the carbon cycle throughout photosynthesis, remineralization,
and calcination [18]. These NPZD processes influence ocean acidification indices, so marine carbon
and biogeochemical models are useful for understanding past, present, and future ocean acidification.

Biogeochemical models focused on NPZD processes in the North Pacific have been developed by
Kawamiya et al. [19–21], Kishi et al. [22], Fujii et al. [23], Yoshie et al. [24] and Sasai et al. [25]. Onitsuka
and Yanagi [26], Guo and Yanagi [27] and Yoshie et al. [24] have developed biogeochemical models
for marginal seas including the Japan Sea, the East China Sea and the Seto Inland Sea, respectively.
These models included primary productivity among the NPZD processes, but did not include the
carbon cycle. Zhao and Guo [28] established an inorganic carbon system module for the Yellow and
East China Seas, and Luo et al. [29] constructed a carbon biogeochemical model using the NORWeigian
Ecological Model (NORWECOM) and a hydrodynamic module [28].

Earth System Models (ESMs) are climate models that may include physical processes and
biogeochemical cycles, and so can facilitate representation of anthropogenic effects on the carbon
cycle. In modeling future scenarios, marine ecosystems in ESMs are adapted to particular environmental
conditions based on social and economic scenarios (Coupled Model Intercomparison Project Phase 5; [30–34]).
Several modeling studies have used coupled climate–marine biogeochemical models to investigate how
environmental stressors might evolve under climate change scenarios [30,34]. While ESMs provide
past/present/future distributions of several biogeochemical components, and approximately reproduce
the large-scale patterns of the subpolar and subtropical gyres, their outputs are not necessarily adequate
for reproducing smaller-scale patterns, including shelf processes and/or mesoscale phenomena.

The Japan Coastal Ocean Predictability Experiment (JCOPE: http://www.jamstec.go.jp/jcope/) is an
operational eddy-resolving ocean physical model. The latest version of the model (JCOPE2M) [35,36]
assimilates satellite sea surface height anomalies and sea surface temperature, and temperature and
salinity data obtained from floating profilers and/or ship measurements. The JCOPE2M covers the
marginal seas of Japan (including the Okhotsk, Japan and East China Seas) in the geographic range
defined by 10.5◦–62◦ N and 108◦–180◦ E (Figure 1). It reproduces the Kuroshio, Oyashio, mesoscale
eddies, and upwelling and mixing, which play crucial roles in biological processes related to primary
productivity in the upper ocean. The model products provide reanalysis data based on assimilations of
all the available observed data. The model outputs include data on velocities, temperature, salinity, and
sea elevation that are corrected using data assimilation techniques, and the model more realistically
reproduces the physical conditions than non-operational physical models.

To improve our insights into the drivers of ocean acidification, we aimed to develop the JCOPE
further to incorporate a new marine ecosystem and carbon cycle model (hereafter JCOPE_EC), driven
by the physical processes represented by the JCOPE2M model outputs [37]. In this contribution,
we provide a description of the JCOPE_EC, and report on the quality of the model outputs by comparing
them with available observed data. The present version of the JCOPE_EC includes damping terms for
the climatological states of dissolved inorganic nitrate (DIN), dissolved inorganic phosphate (DIP),
dissolved inorganic carbon (DIC) and total alkalinity (ALK) and so can be used to determine the
distributions of ocean acidification indices in the North Western Pacific, with a constraint to the
climatological information. Sensitivity analysis was performed using fixed values for temperature,
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salinity, DIC, and ALK, to assess which variables were important in determining the ocean acidification
indices, pH and aragonite saturation (Ωarg).

This is the first time the development of an operational carbon cycle model with eddy-resolving
horizontal resolution focused on the North Western Pacific has been reported. Some fundamental data
required for our study (e.g., climatology data) had to be acquired because only a few of the necessary
data for research in this challenging scientific field were available.

Details of the model formulation are provided in Section 2. The data and model parameters
used in the study are described in Section 3. Section 4 describes how the model was validated with
observed data. In Section 5, the influence of some environmental variables on ocean acidification
indices (pH and Ωarg) are discussed. The main findings of the study are overviewed, and future issues
are discussed, in Section 6.
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Figure 1. Model target area and Japan Meteorological Agency (JMA) observation sites in 2015.
The colored red points indicate the JMA observation points. The red points in the shaded blue,
orange, pink and green regions were used in the calculation of optimized operations and of correlation
coefficients between observation and model outputs for the subarctic region, the Kuroshio extension,
the subtropical region and the Japan Sea, respectively (Tables 2 and 3).

2. Model Formation

The JCOPE_EC was constructed on an offline tracer model driven by physical processes simulated
by the model outputs of the JCOPE2M, and an operational eddy-resolving ocean general circulation
model based on the Princeton Ocean Model, with a generalized sigma coordinate [38]. The JCOPE_EC is
a three-dimensional high-resolution regional model that covers the western North Pacific (10.5◦–62◦ N,
108◦–180◦ E) at a horizontal resolution of 1/12◦ (9.1–4.4 km) and has 46 vertical active levels.

2.1. Equations Governing the Marine Ecosystem Model

A simple nitrogen-based plankton ecosystem model (NPZD) was used. It comprised five
components including dissolved inorganic nitrogen (DIN, NO3), dissolved inorganic phosphate
(DIP, PO4), phytoplankton (P), zooplankton (Z) and detritus (D) [26,27]. The carbon cycle model
comprised three components: DIC, ALK and calcium carbonate (CaCO3), and was coupled with the
NPZD model. Detritus corresponded to the concentrations of particulate organic nitrogen (PON).
The pH (pHinsitu, pH25) and Ωarg values were calculated from temperature, salinity, DIC and ALK
using a Fortran program based on the CO2sys MATLAB software [39,40]. The development of the
nitrogen-based plankton ecosystem model followed the outlines described by Guo and Yanagi [27],
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Onitsuka and Yanagi [26] and Sasai et al. [25] (Figure 2a). The carbon cycle model is referred from
Orr et al. [41], Ewen et al. [42] and Schmitnner et al. [18] (Figure 2b).

The source-sink terms for each individual biological tracer were defined by the following equations:

dP
dt

= Phtosynthesis (DIN, DIP, P) −Respiration (P) −Mortality (P) −Grazing (P, Z), (1)

dZ
dt

= Grazing (P, Z) −Mortality (Z) − Egestion (Z) − Excertion (Z), (2)

dD
dt

= Egestion (Z) + Mortality (P) + Mortality (Z) −Decomposition (D) −
∂
∂z

(WDD), (3)

d(DIN)
dt = −Phtosynthesis (DIN, DIP, P) + Respiration (P) + Excertion (Z)

+Decomposition (D) −Clim_Damp(DIN)
(4)

d(DIP)
dt

=
1

RP:N

d(DIN)

dt
−Clim_Damp(DIP), (5)

where W D is the sinking velocity of detritus, RP:N is the Redfield ratio of P (phosphorus):N (nitrogen)
(Table 1). The biogeochemical processes represented in Equations (1)–(5) are as follows:

Photosynthesis (DIN, DIP, P) =

Vmax exp(CP
T T) ×min

(
DIN

DIN+KDIN
, DIP

DIP+KDIP

)
×

I(P;z)
Iopt

exp
(
1− I(P;z)

Iopt

)
× P,

(6)

where T is the seawater temperature, Vmax is the maximum growth rate from photosynthesis,
and KDIN and KDIP are half saturation constants for DIN and DIP, respectively. We adopted
optimal uptake kinetics for KDIN relating to Vmax, according to the theory of physiological
acclimation of phytoplankton [25,43], defined as: KDIN = Vmax/A + 2

√
Vmax ·DIN/A (µmol · l−1)

and KDIP = Vmax/A + 2
√

Vmax ·RP:NDIP/A (µmol · l−1) , where A is an affinity coefficient of basic
cellular physiology representing the efficiency of nutrient encounters at the phytoplankton cell surface,
RP:N is the stoichiometry of N to P [44,45], CP

T is a temperature-dependent coefficient for photosynthesis,
and Iopt is the optimum light intensity. I(P;z) is the light intensity at depth z, and is determined by solar
radiation at the sea surface (Is) and the light extinction coefficient, k(P). These relationships are given by

I(P; z) = Is exp

−
z∫

0

κ(P)dz

, (7)

where k(P) = cdom + 0.054 P0.6667 + 0.088 P, cdom is the light dissipation coefficient of seawater.
k(P) depends on cdom and a shelf shading effect influenced by phytoplankton [21,27].

The respiration (extracellular excretion) of phytoplankton, and the mortality of phytoplankton
and zooplankton were defined as follows:

Respiration (P) = R× exp(CRP
T T) × P, (8)

Mortality(P) = MP × exp(CMP
T T) × P2, (9)

Mortality(Z) = MZ × exp(CMZ
T T) ×Z2, (10)

where CRP
T , CMP

T , and CMZ
T are temperature-dependent coefficients for the respiration of phytoplankton,

and the mortality of phytoplankton and zooplankton, respectively. The respiration of phytoplankton
was assumed to be proportional to its concentrations and rate of photosynthesis. The mortality
rates for phytoplankton and zooplankton were assumed to be proportional to the square of their
concentrations (biomass).
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The grazing of phytoplankton by zooplankton was defined as a function of temperature and the
concentrations of phytoplankton and zooplankton, expressed as

Grazing(P, Z) = GZ ×max
{
0, 1− exp(λ(P∗ − P))

}
× exp(CGZ

T T) ×Z, (11)

where CGZ
T is the temperature dependent-coefficient of grazing by zooplankton, Gz is the maximum

rate of grazing of phytoplankton at 0 ◦C, P* is the threshold phytoplankton concentration for possible
grazing by zooplankton, and λ is the Ivlev constant. Zooplankton were assumed to graze only on
phytoplankton.

Excretion and egestion by zooplankton were assumed to be proportional to their grazing and
predating, as defined by

Egestion (Z) = (1− αZ) ×Grazing(Z), (12)

Excretion (Z) = (αZ − βZ) ×Grazing(Z), (13)

where αz and βz are assimilation and growth efficiency constants for zooplankton, respectively.
The decomposition of detritus is dependent on the water temperature and was expressed as follows:

Decomposition (D) = VD × exp (CλD
T T) ×D, (14)

where VD is the decomposition rate at 0 ◦C, and CλD
T is the temperature coefficient of decomposition.

Climatology damping conditions were adapted for the DIN and DIP source–sink terms, and were
defined as follows:

Clim_Damp(DIN) = γ(DIN −DINclim), (15)

Clim_Damp(DIP) = γ(DIP−DIPclim), (16)

where γ is the inverse of the time scale (= 30 days), and DINclim and DIPclim are the monthly climatology
data for DIN and DIP, respectively. Some details of climatology damping are described in Section 3.1.Sustainability 2019, 11, 2677 6 of 30 
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Table 1. Biogeochemical parameters used in the JCOPE_EC. The biogeochemical values used by
Onitsuka and Yanagi [26] are also provided as a reference.

Symbol Definition Value Units
Reference

Values Onitsuka
and Yanagi [26]

Ecosystem Model

For phytoplankton
Vmax Growth rate for phytoplankton 0.0492 day−1 0.6

A Affinity coefficient of basic cellular physiology 6.75 mmolN−1m−1day−1 −

KDIN Half saturation constant for DIN 1.50 mmolN m−1 1.5
KDIP Half saturation constant for DIP 0.0940 mmolN m−1 0.09
MP Phytoplankton mortality rate at 0 ◦C 0.0400 (mmolNm−1) m−3 day−1 0.07
Pmin Threshold of phytoplankton mortality 0.0587 (mmolNm−1) m−3 −

R Phytoplankton respiration rate at 0 ◦C 0.0317 day−1 0.3
CP

T Temperature coefficient for photosynthesis 0.0392 ◦C−1 0.0693

CRP
T

Temperature coefficient for phytoplankton
respiration 0.0519 ◦C−1 0.0519

CMP
T

Temperature coefficient for phytoplankton
mortality 0.0693 ◦C−1 0.0693

Iopt Optimum light intensity for phytoplankton * 20–120 W m−2 70
Iopt

0 100.0 −

Iopt
1 70.0 −

latbnd Boundary for latitudinal differences 45.0 −

latslp Slope for latitudinal differences 4.0 −

cdom Light dissipation coefficient of seawater * 0.015–0.045 m−1 0.04
cdom

0 0.0275 m−1 −

cdom
1 0.0250 m−1 −

Latslp_dom Slope for latitudinal differences for cdom 1.5 −

For zooplankton
GZ Maximum grazing rate of zooplankton at 0 ◦C 0.05 day−1 0.3
Λ Ivlev constant 1.4 (mmolN m−3)−1 1.4

MZ Zooplankton mortality rate at 0 ◦C 0.05 ◦C−1 0.07
βz Growth efficiency of zooplankton 0.3 0.3
αz Assimilation efficiency of zooplankton 0.7 0.7

P* Zooplankton threshold value for grazing on
phytoplankton 0.0430 (mmolNm−1) m−3 0.043

CGZ
T

Temperature coefficient for zooplankton
grazing 0.0390 ◦C−1 0.0693

CMP
T

Temperature coefficient for zooplankton
mortality 0.0693 ◦C−1 0.0693

For diatoms
WD Singing velocity of detritus 6.7 m day−1 10
VPN Decomposition rate at 0 ◦C (DET→DIN) 0.050 day−1 0.05
CλD

T Temperature coefficient for decomposition 0.0693 ◦C−1 0.0693
Carbon Cycle Model

RP:N Stoichiometry of nitrogen to phosphorus [46] 16.0 −

RC:P Molar elemental ratios 112.0 −

RCaCO3/POC
CaCO3 over nonphotosynthetical POC
production ratio 0.035 −

RALK:N
Alkalinity over non-photosynthetic N
production ratio 0.001 −

DCaCO3 CaCO3 remineralization e-folding depth 3500.0 m −

* indicates that latitudinal differences are the biogeochemical parameters adopted latitudinal differences. The underlines
indicate the model types used the setting parameters.

2.2. Equations Governing the Carbon Cycle Model

The modeling of the air–sea gas exchange and carbon chemistry followed the protocols from the
Ocean Carbon-Cycle Model Intercomparison Project (OCMIP) [41,42]. Biological uptake and release
occur in fixed elemental ratios for C, P and/or N. The production of DIC and ALK was controlled by
changes in the inorganic nutrients (DIN, DIP) and calcium carbonate (CaCO3) in molar relationships
as follows:

d(DIC)
dt

=
d(DIP)

dt
·RC:P −

d(CaCO3)

dt
−Clim_Damp (DIC), (17)

d(ALK)
dt

= −
d(DIN)

dt
·RALK:N − 2 ·

d(CaCO3)

dt
−Clim_Damp (ALK), (18)

where RC:P and RALK:N are the molar elemental ratios of C to P, and of ALK to N, respectively.
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Climatology damping conditions were also adapted for the DIC and ALK source–sink terms,
as follows:

Clim_Damp(DIC) = γ(DIC−DICclim), (19)

Clim_Damp(ALK) = γ(ALK −ALKclim), (20)

where DICclim and ALKclim are monthly climatology data for DIC and ALK, respectively (see Section 3.1).
Calcium carbonate (CaCO3) immediately sinks after its production. We did not treat the CaCO3

concentration as a predictable variable in this model. The equations for approximating CaCO3 were
as follows:

d(CaCO3)

dt
= Pr (CaCO3) −

∫
Pr (CaCO3)dz ·

d
dz

(
e−z/DCaCO3

)
, (21)

Pr (CaCO3) = (Egsetion(Z) + Mortality(P) + Mortality(Z))RCaCO3/POCRC:P), (22)

where DCaCO3 is the CaCO3 remineralization e-folding scale depth, and RCaCO3/POC is the ratio of CaCO3
to the non-photosynthetic production of particulate organic carbon (POC). Pr (CaCO3) is parameterized
as a fixed ratio (RCaCO3/POC) of the production of non-diazotrophic detritus [18].

2.3. Inorganic Carbon Cycling in Water

The chemical reactions in water involve the carbon–water–borate system [47]. This system
describes the relationships among [DIC], [ALK], [H+], and borate (BOR), whereby

[ALK] =

 2k1k2X2

1 + k1X + k1k2X2

[DIC] +
( kb

1 + kbX

)
[BOR] + kwX −X−1, (23)

[BOR] = [B(OH)−4 ] + [H3BO3] � (0.00232/10.81)(S/1.80655), (24)

where BOR can be approximated using a known parameter of salinity, S, and X = 1/[H+] (note that
pH = −log10[H+]). These parameters were solved iteratively, as [ALK] approximates the carbonate
alkalinity according to

[ALK]c = 2[CO2−
3 ] + [HCO−3 ] =

 2k1k2X2

1 + k1X + k1k2X2

[DIC]. (25)

As γc = [ALK]/[DIC], Equation (23) can be reduced to an iterative solution of the following two equations
for two unknowns, X and γc [47,48]:

γc =
[ALK]
[DIC]

−

( kbX

kb + 1

)
[BOR]
[DIC]

− [kwX −X−1]
1

[DIC]
, (26)

X =
(γc − 1)k1 + [(γc − 1)2k2

1 + 4γc(2− γc)k1k2]
1/2

2(2− γc)k1k2
. (27)

γc is approximately 1.1, and this value can be used as a first guess. If X is known, the various ion
concentrations can be defined [47] as follows:

[CO2] =
[DIC]

1 + k1X + k1k2X2 , (28)

PCO2 =
[DIC]/k0

1 + k1X + k1k2X2 , (29)

CO2−
3 =

k1X2[DIC]
1 + k1X + k1k2X2 , (30)
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Ωarg =

k1X2[DIC]293.86S
karg

1 + k1X + k1k2X2 . (31)

The apparent dissolution constants k0, k1, k2, kb, kw, and karg are empirical functions of ambient
temperature and salinity (see Mucci [49], Feely et al. [3] and other sources, cosys.m as summarized
by Zeebe and Wolf-Gladrow [50]). The algorithm was checked using typical representative values
provided by Machkenzie et al. [51], except for Ωarg.

The ALK flux at the sea surface was set to zero, while the DIC flux in the form of CO2 gas was
assumed to be proportional to the difference in the partial pressures of CO2 in surface waters (PCO2)
and the atmosphere (Patm

CO2
) [47,50], as described by

FDIC = ρwVpk0C(PCO2 − Patm
CO2

), (32)

FALK = 0, (33)

where ρw is the seawater density, and k0c is the solubility of CO2 in seawater in mol kg−1 atm−1 [52–54],
and is expressed as follows:

k0C = exp
(
9345.17

(
1
T

)
− 60.2409 + 23.3585 log

(
T

100

)
+S

(
0.023517− 0.023659

(
T

100

)
+ 0.0047036

(
T

100

)2
))

,
(34)

where T is in units of Kelvin, and Vp is the piston velocity, which depends on wind speed U10 and the
Schmidt number (Sc), and is expressed in units of m s−1 [53] as follows:

Vp = 8.61× 10−7U2
10(Sc/660)−1/2. (35)

Sc is a function of the ambient temperature T (in ◦C), and, for CO2, is expressed as follows:

Sc = 2073.1− 125.62 T + 3.627 T2
− 0.043219 T3. (36)

3. Data and Model Parameters

3.1. Climatology and Forcing Data

We created monthly DIN and DIP climatological data on the model grid by interpolating the
original data from the World Ocean Atlas 2013 (WOA13). Yasunaka et al. [55] created a monthly
climatology for surface DIN and DIP in the North Pacific (10◦–60◦ N, 120◦ E–90◦ W). We replaced the
surface values for DIN and DIP in the WOA13 with the data from Yasunaka’s study, in an area defined
by 10.5◦–60◦ N and 120◦–180◦ E.

A climatological DIC database was created by combining an annual mean climatology product
estimated using the method of Goyet et al. [56] with temperature and salinity data from the WOA
climatology and the annual mean climatological datasets created by Key et al. [57]. There were
no monthly climatology datasets available, except for the monthly surface climatology datasets of
Yasunaka et al. [58]. We therefore replaced the surface values in the climatology database with
Yasunaka’s climatology data, for an area defined by 10.5◦–60◦ N and 120◦–180◦ E.

There were no sophisticated climatological datasets for ALK for the study region [46,56,57,59].
Consequently, we first combined two climatology datasets estimated by Goyet et al. [27] with
temperature and salinity data from the WOA13 climatology and the annual mean climatology of
Key et al. [57], and then replaced the surface data for depths above 200 m with the data estimated
using Takatani’s method [46].

We found that the first version of the created ALK data was significantly different from the ALK
observed data obtained for the Japan Sea for the period 1997–2017, downloaded from the Japan
Meteorological Agency (JMA) website, so we replaced the ALK data for the Japan Sea with the JMA
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observed data, on the assumption that the JMA data had the characteristics of ALK profiles in the
Japan Sea.

After all the processes for creating the monthly climatological data for DIN, DIP, DIC and ALK
were completed, we applied Gaussian smoothing with a spatial decorrelation scale (e-folding scale) of
100 km to remove any horizontal gaps in the data that may have formed during the repeated operations
that combined the different data sources.

The model required forcing data to drive photosynthesis and CO2 gas exchange in the
surface/subsurface layer. Short wave radiation (Is) was derived from the 6-hourly NCEP/NCAR
(National Centers for Environmental Projection/National Center for Atmospheric Research) reanalysis
data. Monthly mean values for the partial pressure of carbon dioxide (Patm

CO2
) are available at the JMA

website. Using data from the Ayasato Observatory in Japan, we created an empirical formula for
CO2 (in ppm) with the addition of a second-order polynomial (CO2

poly) and seasonal sinusoidal curve
equations (CO2

curv), as follows:

COpoly
2 = 0.000633× t2

yr − 0.650417× tyr − 859.0625, (37)

COcurv
2 = −0.00064 + 6.09254 cos

(
2π

24×365 thr − 55.20975 2π
360

)
+0.39431 cos

(
2π

24×91.25 thr − 120.3614 2π
360

)
,

(38)

where tyr and thr are the Julian year and the time in hours from 1 January each year, respectively.
The left-hand terms in Equations (1)–(5), (17) and (18) denote transport–diffusion equations for

tracers. The daily mean velocities, sea level, and turbulent diffusion coefficient from the JCOPE2M
were included in the transport–diffusion equations. The daily mean temperature and salinity from the
JCOPE2M were also used to evaluate the source–sink terms in Equations (1)–(5), (17), (18) and (21).

3.2. Biogeochemical Parameters and Observational Data for Validation

Table 1 shows the biogeochemical parameters used in our model, and the relevant reference
values used by Onitsuka and Yanagi [26]. We adjusted the biogeochemical parameters by comparing
the model outputs and the observed data in specific target regions (Figure 1, Table 2). The observed
data were downloaded from the JMA website (Figure 1). The phytoplankton concentrations were
also validated with chlorophyll-a data downloaded from an File Transfer Protocol (FTP) site for the
Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua Ocean Color Data.

In previous studies, where biogeochemical models were applied to the North Pacific and the
marginal seas of Japan, the target area was assumed to be occupied by the same type of water mass
and/or the same water circulation gyres in the subarctic area [19–23,25], the subtropical area [21,25],
and/or the marginal seas [27,60] (Figure 1). In contrast, our model included both subarctic and
subtropical areas and adjoining marginal seas. As biogeochemical situations differ depending on
oceanic conditions [61–63], in our model we applied latitudinal differences for Iopt and cdom, which
were defined as follows:

Iopt = 0.5I0
opt(tanh((Lat− Latbnd)/Latslp) + 1) + I1

opt, (39)

cdom = 0.5c0
dom(tanh((Lat− Latbnd)/Latslp_cdom) + 1) + c1

dom, (40)

where Iopt and cdom change latitudinally from 20 to 120 W/m−2 and from 0.015 to 0.045 m−1, respectively;
I0

opt, I1
opt, c0

dom, and c1
dom are parameters for adjusting from subtropical to subarctic regions (Table 1

and Figure 3); and Latbnd and Latslp (Latslp_cdom) are the coefficients for latitudinal boundaries and the
latitudinal slopes for these parameters, respectively (Table 1 and Figure 3). The effects of latitudinal
differences on Iopt and cdom are described in Appendix A.
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Figure 3. Latitudinal differences in the biogeochemical parameters, (a) the light dissipation coefficient
(cdom) and (b) the optimum light intensity (Iopt).

Table 2. Biogeochemical parameters obtained from optimized parameterization using chlorophyll-a,
for subarctic and subtropical regions.

Chlorophyll-a

Subarctic Region Subtropical Region

Vmax 0.692 0.692
R 0.02 0.04

MP 0.045 0.3
GZ 0.05 0.05
MZ 0.05 0.05
VPN 0.05 0.05
WD 6.79 6.78

Using the Green’s function method [36], we optimized the biogeochemical parameters Vmax, R, Mp,
Gz, Mz, VPN, and WD (Equations (6)–(16) and Table 1). Chlorophyll-a data for 2015 were used in these
optimization operations, and we adopted the optimized operations for the subarctic and subtropical
regions separately. All the estimated biogeochemical parameters were found to be similar to those for
the subarctic and subtropical regions (Table 2), but we manually adjusted Vmax to 0.0492 day−1, after
adopting the latitudinal differences for cdom and Iopt (Appendix A).

3.3. Initial and Boundary Conditions

We used a 1-year period, 2015, for all the experiments, which were driven by the forcing data
for that year. In a preliminary experiment, the phytoplankton were represented by chlorophyll-a
concentrations from the World Ocean Atlas 2001. There was undesirable noise in the model outputs
for phytoplankton in the preliminary experiment, so, for the initial conditions, i.e., the beginning of the
first month in the numerical experiments, constant values for phytoplankton of 0.05 and 0.0 µg/L were
set for depths above 150 m and deeper depths, respectively, and the model was then run continuously.
The initial zooplankton concentrations were set at 10% of the phytoplankton concentration. The initial
detritus concentration was set at 0.0 mmol/kg.

As a first step towards developing reliable operational systems for biogeochemical parameters
related to ocean acidification indices, we adopted a diagnostic approach to obtain realistic distributions
for biogeochemical variables. The variables DIN, DIP and DIC were initialized using the climatology
data for these parameters at the beginning of the 1-year simulation (January), and ALK was initialized
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using the annual climatology at the beginning. The climatology data for DIN, DIP, DIC and ALK were
applied at all open lateral boundaries, and were included in the damping terms in Equations (15), (16),
(19) and (20), with a 30-day time scale. The DIN, DIP and DIC climatology data used for the open lateral
boundaries and the damping conditions (Equations (15), (16), (19) and (20)) were replaced by monthly
data at the beginning of each month. Preliminary results showed that the damping condition was
effective in representing smooth and realistic variations in the biogeochemical variables (not shown).
Using this approach, we were able to predict biogeochemical variables over the short-term (within one
month), driven by the forcing including the ocean and atmosphere reanalysis data with constraints
on the climatology of DIN, DIP, DIC and ALK. All the experiments in this study were driven by the
forcing created from the ocean (JCOPE2M) and atmospheric (NCEP/NCAR) reanalysis data.

4. Results

4.1. Comparison of the Observed Data with the Simulated Outputs

The monthly mean distributions of satellite and modeled chlorophyll-a values at the surface
are shown in Figure 4. The satellite data show contrasting larger and smaller values in the subarctic
and subtropical regions, respectively, throughout the year (Figures 4a–d and 5a). The chlorophyll-a
gradually increased to 2.0–3.0 milli mol/m3 at 50◦ N from March to May, and to 1.0–2.0 milli mol/m3 at
40◦ N, and remained high above 50◦ N during summer (June to July), with double peaks in spring
and autumn around this latitude. There were also double peaks at 40◦ N in spring (March to May)
and autumn (September to October) (Figure 5a). The model outputs basically reflected the observed
chlorophyll-a distribution. The chlorophyll-a values were relatively large for areas above the region of
40◦N, and were lower for areas at lower latitudes (Figure 4e–h). The model gave reasonable simulations
of the chlorophyll-a variability, and the ranges were similar to the observed values (Figure 4e–h),
but gave poor simulations of the seasonal patterns, particularly in the subarctic region (Figure 5a,b).
The model reproduced only one notable peak in summer from May to August at 50◦ N (Figure 5b), and
this peak lagged behind the observed data by 1–2 months (Figure 5a,b). Small and large double peaks
were reproduced at 30◦ N and at 40◦ N, respectively. Consistent with the observed data (Figure 5a),
the model reproduced small peaks for April and October at 20◦ N (Figure 5b).
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The model gave adequate simulations of DIN and reproduced the basic features and seasonal
variability, when the monthly climatology data were dampened (Figures 5c,d and 6e–h). The climatology
indicated large differences in the DIN concentrations between the subarctic and subtropical regions
throughout the year (Figure 6a–d). The DIN values ranged from more than 4 µmol/kg above 45◦ N in
the subarctic region to almost 0 µmol/kg in subtropical regions at various times of the year (Figure 6a–d).
The modelled concentrations of DIN in the subtropical and subarctic regions were reasonably consistent
with observed data. The seasonal variability in the climatology for the subarctic region above
40◦ N (Figures 5c and 6a–d) was reproduced by the model (Figures 5d and 6e–h). The modeled DIP
distributions also reflected the observed data (not shown).Sustainability 2019, 11, 2677 14 of 30 
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Figure 5. Time series for surface chlorophyll-a, dissolved inorganic nitrate (DIN), dissolved inorganic
carbon (DIC) and total alkalinity (ALK) data for longitude 165◦ E from observed data and model outputs.
The purple, blue, green and red colors show the data for 20◦ N, 30◦ N, 40◦ N and 50◦ N, respectively.
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The concentrations of DIC (Figure 7a–d) were high (>2120 µmol/kg) in the Okhotsk Sea and the
northwestern North Pacific along the Kamchatka Peninsula and the Kuril Islands in winter (January)
and spring (April) (Figure 7a,b). The concentrations were less than 2040 µmol/kg in the Kuroshio
Extension region and in the subtropical region below 35◦N (Figure 7a–d). There was noticeable seasonal
variation in the concentrations (Figure 7a–d). For the Okhotsk Sea and northwestern North Pacific
area mentioned above, DIN was not detected in the summer (July) or autumn (October) (Figure 7a–d).
The model simulations were similar (Figure 7e–h), with a minor difference in the continental area
of the Okhotsk Sea in summer and autumn (Figure 7c,d,g,h). The model reproduced the observed
temporal variability in the surface DIC values for the latitudes in subtropical and subarctic regions
along longitude 165◦ E (Figure 5e,f). The time-series in simulated DIC for 40◦ N showed a relatively
larger decrease in DIC in summer (from July to September; Figure 5f) compared with the observed
data for 40◦ N (Figure 5e).

Due to a lack of observed data, we could not compare the seasonal variations in ALK [13,26,52,53].
Instead of using the ALK climatology, we plotted the JMA observed data (Figure 8a–c). These data
showed that the ALK concentrations were relatively low (2200–2250 µmol/kg) in the subarctic region
above 40◦ N and in the Okhotsk Sea, and were higher (2250–2300 µmol/kg) below 40◦ N from spring to
autumn (Figure 8a–c). The model simulations of the patterns of ALK in the subarctic region above 45◦

N in winter, spring and autumn (Figure 8d–f), and in the subtropical region in summer (Figure 8f), were
similar. However, unlike the observed data, there was a marked decrease (50 µmol/kg) for summer in
the subarctic region and the Okhotsk Sea (Figure 8f). The low values in summer were followed by
higher values in autumn (Figure 8g). The time series for ALK (Figure 5g) also showed a decrease in
summer around 40◦ N and 50◦ N. The summer decrease arose from the modeled variations in CaCO3

(not shown), and indicates that the summer decrease in ALK may have been overestimated.
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Figure 6. Surface monthly distributions of dissolved inorganic nitrate (DIN: µmol/kg) in January (a,e),
March (b,f), July (c,g), and October (d,h) in the climatology created by World Ocean Atlas 2013 (WOA13)
and Yasunaka et al. [55], and from the model outputs, respectively.
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Figure 7. Surface monthly distributions of dissolved inorganic carbon (DIC: µmol/kg) in January (a,e),
April (b,f), July (c,g), and October (d,h) from climatology (combined datasets from Goyet et al. [56],
Key et al. [57] and Yasunaka et al. [58]; see Section 3.1 for details) and model outputs, respectively.
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Figure 8. Plots of the JMA observed values for total alkalinity averaged above a depth of 20 m in spring
(a; March to May), summer (b; June to August) and autumn (c; September to November), and surface
monthly distributions of total alkalinity (ALK: µmol/kg) in January (d), April (e), July (f) and October
(g) from model outputs. The color bar indicates the alkalinity concentration.

4.2. Ocean Acidification Indices pH and Ωarg

Figure 9 shows the surface pHinsitu (pH25) and Ωarg values calculated from the model outputs
for temperature, salinity, DIC and ALK (Figure 9a–d). The pHinsitu ranged from 7.85 to 8.10 in the
northwestern Pacific area (Figure 9a–d), except in winter and spring (January and April) for the
East China Sea near the coast of China (Figure 9a,b). The values in the side of Pacific basically ranged
from 8.00 to 8.05. The values were lower (7.85–7.90) in the Okhotsk Sea and the Japan Sea throughout
the year, and on the Pacific Ocean side along the Kamchatka Peninsula and Kuril Islands from winter
to spring (Figure 9a,b). In the Kuroshio Extension region (140◦–180◦ E, 30◦ N), the pH values were
low during July (summer). The values were highest (8.10–8.15) in winter (January) and spring (April)
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(Figure 9a) between the subtropical and subarctic regions in the area corresponding to the Kuroshio
extension. The values varied with latitude along the 165◦ E line (Figure 10a). The highest and lowest
values occurred in February or March and June or August, respectively, in lower latitude regions
around 20◦ N and 30◦ N, but the opposite occurred at around 40◦ N and 50◦ N (Figure 10a).

The pH25 values were lower in the northern region and higher in the southern region (Figure 9e–h).
The lowest values (7.5–7.6) occurred in the Okhotsk Sea and along the Kamchatka Peninsula on the
Pacific Ocean side in winter (January) and spring (April) (Figure 9e,f). The highest values (8.10–8.15)
were found in the subtropical region at latitudes below 20◦ N. The pH25 values increased in summer
(Figures 9e–h and 10b). The amplitudes were larger in the northern region than in the southern region.
The lowest and highest values at each latitude occurred in April and August, respectively.

The surface Ωarg values (>3.5) were high in the subtropical region, and low (2.0–3.0) in the
subarctic region (Figure 9i–l). The values were lowest (1.0–1.5) in the Okhotsk Sea and along the
Kamchatka Peninsula and the Kuril Islands on the Pacific Ocean side in winter (January) and spring
(April). The values increased in summer (July), with similar spatial variability in autumn (October).
The time-series at longitude 165◦ E showed that the Ωarg values were highest in August–September
and lowest in April (Figure 10c), and the seasonal variation was similar to that for pH25 (Figure 10b).

Takahashi et al. [59] and Jiang et al. [64] created a global map of the surface climatology for pHinsitu

and Ωarg in spring/summer and autumn/winter, but not for the Okhotsk, Japan and East China Seas.
Their climatology showed that the pHinsitu and the Ωarg varied seasonally from 0.06 to 0.08 and from
0.50 to 1.00, respectively, in the subtropical, Kuroshio Extension, and were similar to the modeled
values (Figure 9a–d,i–l). Yara et al. [65] studied the Ωarg distributions in a marginal area around
Japan (24◦–48◦ N, 118◦–157◦ E). Their isothermal contours (Ωarg = 2.3 and 3.0), which reproduced the
conditions in the 2010s (their Figure 7b), were similar to our model outputs (Figure 9i–l).
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Figure 10. Time series of surface pHinsitu (a), pH25 (b) and Ωarg (c) at longitude 165◦ E from the
model outputs. The purple, blue, green and red colors show the data for 20◦ N, 30◦ N, 40◦ N and
50◦ N, respectively.

4.3. Reproducibility of the Biogeochemical Variables

The correlation coefficients between the JMA observed data and the model outputs for each region
for 2015 were calculated for chlorophyll-a, DIN, DIC, pH25 and ALK (Table 3). The observed data and
model outputs could be compared as they overlapped in time and location. The natural logarithm
values of chlorophyll-a were calculated, as the plankton concentrations were not normally distributed
but followed a lognormal distribution [66].

The correlation values were 0.57, 0.88, 0.86 and 0.87 for chlorophyll-a; 0.72, 0.88, 0.87 and 0.95
for DIN; 0.74, 0.87, 0.78 and 0.92 for DIC; 0.48, 0.69, 0.48 and 0.35 for ALK; 0.74, 0.86, 0.81 and 0.90 for
pH25; and 0.99, 0.98, 0.98 and 0.99 for Ωarg, in the subtropical region, the subarctic region, the Kuroshio
Extension and the Japan Sea, respectively (Table 2). Scatter plots (Figures 11–13) showed that the
parameters were highly correlated with each other (not shown for DIP, DIC and ALK).

Table 3. Correlation coefficients for chlorophyll-a (Chl-a), DIN, DIC, ALK, pH25 and Ωarg between
JMA observed data and the model outputs for each region in 2015 (Figure 1). The observed data and
model outputs that matched in time and place were compared. Values in brackets indicate p-values
the significance level of 0.05 and the significant level of p < 0.05. Only for Chl-a, log10 (Chl-a) values
were evaluated.

Parameter Subtropical
Region

Subarctic
Region

Kuroshio
Extension Japan Sea

Chl-a 0.57 (0.07) 0.88 (0.07) 0.86 (0.12) 0.87 (0.15)
DIN 0.72 (0.04) 0.88 (0.12) 0.87 (0.10) 0.95 (0.11)
DIC 0.74 (0.09) 0.87 (0.20) 0.78 (0.17) 0.92 (0.26)
ALK 0.48 (0.09) 0.69 (0.20) 0.48 (0.17) 0.35 (0.26)
pH25 0.78 (0.09) 0.86 (0.20) 0.81 (0.17) 0.90 (0.26)
Ωarg 0.99 (0.09) 0.98 (0.20) 0.98 (0.17) 0.99 (0.26)
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Figure 11. Scatter plots showing the chlorophyll-a concentrations for the subtropical (a) and subarctic
(b) regions, the Kuroshio-extension (c), and the Japan Sea (d). The horizontal and vertical axes
denote the simulated and JMA observed values, respectively. The colors indicate the observed and/or
simulated depths.
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Figure 12. Scatter plots showing the pH25 values for the subtropical (a) and subarctic (b) regions,
the Kuroshio-extension (c) and the Japan Sea (d). The horizontal and vertical axes denote simulated
and JMA observed values, respectively. The colors indicate the observed and/or simulated depths.
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Figure 13. Scatter plots showing Ωarg values for the subtropical (a) and subarctic (b) regions,
the Kuroshio-extension (c) and the Japan Sea (d). The horizontal and vertical axes denote the
simulated and JMA observed values, respectively. The colors indicate the observed and/or simulated
depths. As the observed values for Ωarg were not provided in the downloaded JMA data, we calculated
the values for Ωarg from the observed JMA values for temperature, salinity, DIC and ALK.



Sustainability 2019, 11, 2677 18 of 28

5. Discussion

5.1. Sensitivity Experiment for pH and Ωarg Based on Constant Temperature, Salinity, DIC and ALK

To assess which variables were important in determining the ocean acidification indices pH
and Ωarg, we performed a series of sensitivity experiments assuming a constant set of conditions for
temperature (= 21 ◦C), salinity (= 34.44), DIC (= 1995.2 µmol/kg) and ALK (= 2260.9 µmol/kg). In the
sensitivity experiments, pH and Ωarg were calculated with the assumed fixed variables of temperature,
salinity, DIC and ALK, individually, in place of these original target variables of the model outputs.
The other variables, except the assumed constant variables, were the same as those of the model
outputs (Figures 4e–h, 6e–h, 7e–h and 8; Section 4). The assumed constant variables were determined
by the values corresponding to median values calculated from the model outputs in the region of
10.5◦–62◦ N and 108◦–180◦ E in the surface in January (e.g., Figures 6e and 7e).

Figure 14 shows the horizontal distributions of the surface pH difference (∆pH), which was
calculated by subtracting the model output for each sensitivity experiment using each fixed temperature,
salinity, DIC and ALK value from the basic model outputs shown in Figure 9a–d. Measuring the
differences enabled the individual effects of each target variable to be assessed. The temperature and
DIC had most influence on the pHinsitu in winter, spring and autumn, while ALK had a considerable
influence in summer.

The variables that had most influence on Ωarg throughout the year were DIC and ALK (Figure 15).
The sensitivity experiments using the fixed values for temperature, DIC and ALK (Figure 15) showed
positive effects in the subarctic region and negative effects in the subtropical region. The effects of
temperature and salinity, while detectable, were small compared with the effects of DIC and ALK
(Figure 15e–h).

5.2. Effect of Seasonal Processes on pHinsitu

The sensitivity analysis of the effect of temperature on pH showed a clear positive and negative
contrast between the northern and southern regions, respectively (Figure 14a–d). This was related to
the dissociation equilibrium: H2O↔H++OH−. A relatively low (high) temperature in the northern
(southern) region resulted in an increase (decrease) in the pH by shifting the equilibrium in the
direction: H2O←H++OH− (H2O→H++OH−). With the transition from winter to summer, the pH
decreased throughout the entire region as a result of increasing temperature (Figure 14a–c), while the
pH increased with cooling in autumn in some parts of the northern region (Figure 14d).

The horizontal distribution of surface DIC (Figure 7e–h) led to a significant negative and positive
contrast between the northern and southern regions, respectively (Figure 14i–l). This was associated
with the CO2 equilibrium in sea water, defined by: CO2+H2O↔H++HCO3

−. Relatively high (low) DIC
concentrations in the northern (southern) region tended to result in lower (higher) pH values by shifting
the equilibrium in the direction: CO2+H2O→H++HCO3

− (CO2+H2O←H++HCO3
−). The decrease

in DIC from winter to summer (Figure 7e–g) caused the pH to increase throughout the entire region
(Figure 14j,k), by shifting the equilibrium in the direction: CO2+H2O←H++HCO3

−.
The relatively high concentration of ALK in the subtropical gyre (Figure 8a–d) resulted in a

relatively high pH (Figure 14m–p). As the ALK decreased from winter to summer (Figure 8a–c) the pH
decreased throughout the entire region (Figure 14m–o). This trend was more evident in the northern
region than in the southern region (Figure 14o), reflecting the relatively enhanced decrease in ALK in
the northern region (Figure 8c).

The sensitivity of salinity to pH was not significant compared with the other variables, and
the seasonal variability in pH caused by the variation in salinity was also minor (Figure 14e–h).
Lower salinity levels led to higher pH values, and was locally evident around the mouth of the
Changjiang River.
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From the sensitivity analyses, we inferred that overall seasonal variations in the pHinsitu

(Figure 9a–d and Figure 10a) were largely governed by the balance between temperature and DIC, and
to a lesser extent by ALK. In the southern region, the relationship with temperature was relatively
important, and thus the pHinsitu decreased from winter to summer. In contrast, the pHinsitu increased
slightly from winter to summer in the northern region, where the relationship with DIC and ALK
was slightly stronger. The pH25 variation mainly reflected the effects of DIC and ALK variations
(Figure 9e–h and Figure 10b). However, the model probably overestimated a decrease in ALK in
summer, as shown in Figure 8b,f, and the variations in the pHinsitu may actually be mainly governed
by temperature and DIC.
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Figure 14. Surface distributions of the pH differences (∆pH) in January, April, July, and October from
sensitivity experiments using fixed values for temperature (a–d), salinity (e–h), DIC (i–l), and ALK
(m–p). When calculating the pH in the sensitivity experiments, the values of variables other than
the fixed variables were the same as those in the model outputs shown in Figures 4e–h, 6e–h, 7e–h
and 8d–g. ∆pH is the remainder after subtracting the model outputs from the sensitivity experiment
from the basic model outputs for each month.

5.3. Seasonal Processes Affecting Ωarg Variations

The sensitivity of the target variables to Ωarg are shown in Figure 15. The temperature dependence
of Ωarg can be explained by the characteristics of the aragonite solubility product, karg (Ωarg =

([Ca2+][CO3
2−])/karg). The value of karg decreases as the water temperature increases [34]. Latitudinal

differences in the sensitivity of temperature resulted in higher and lower Ωarg values in the southern
and northern regions (Figure 15a–d), respectively. Seasonal warming/cooling affected the seasonal
variation in Ωarg throughout the entire region.
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The reaction for the dissolution of marine carbonate [3,6], CO2+H2O+CO3
−
↔2HCO3

−, was related
to latitudinal differences in the sensitivity of DIC (Figure 15i–l). As the DIC concentration was relatively
high in the northern region (Figure 7e–h), the concentration of carbonate ions (CO3

−) was relatively
low, and consequently the Ωarg value was relatively low in this region (Figure 15i–l). The seasonal
decrease in DIC from winter to summer caused the Ωarg values to increase throughout the entire region
(Figure 15k). The sensitivity of ALK to Ωarg showed that higher ALK levels led to higher Ωarg values
because the higher ALK levels were related to higher carbonate ion concentrations. With a decrease in
ALK in the northern region from winter to summer (Figure 8a–c), the Ωarg values tended to decrease
(Figure 15m–o). The sensitivity of salinity to Ωarg (Figure 15e–h) was low, and similar to that of the
pHinsitu (Figure 14e–h).

From the sensitivity analysis, we inferred that DIC and ALK had most impact on the seasonal
variability in Ωarg across the entire region throughout the year, with less of a temperature effect.
However, the summer increase in Ωarg (Figure 10c) was mainly the result of the decrease in DIC in
summer (Figure 9i–l and Figure 10c), because the model probably overestimated a decrease in ALK
in summer and the decrease in ALK and the increase in temperature in summer together caused a
decrease in Ωarg.
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Figure 15. Surface distributions of differences in the aragonite saturation (∆Ωarg) in January, April, July,
and October from sensitivity experiments using fixed values for temperature (a–d), salinity (e–h), DIC
(i–l), and ALK (m–p). When calculating the Ωarg in the sensitivity experiments, the values of variables
other than the fixed variables were the same as those in the model outputs shown in Figures 4e–h, 6e–h,
7e–h and 8. ∆Ωarg is the remainder after subtracting the model outputs from the sensitivity experiment
from the basic model outputs for each month.
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6. Conclusions

We developed a new biogeochemical model (JCOPE_EC) for carbon processes, based on the
physical background of a numerical model product, JCOPE2M, which is a three-dimensional operational
eddy-resolving model product. Comparison with observed data for 2015 showed that the JCOPE_EC
model adequately reproduced the basic features of chlorophyll-a, DIN (DIP), DIC and ALK. The seasonal
variability in these biogeochemical variables was similar to the observed (climatological) variability,
although the modelled seasonal variability in chlorophyll-a and ALK deviated somewhat from
the observed.

The overestimation of the increase in chlorophyll-a in the subarctic region (Figures 4 and 5b)
may be related to iron cycling, which was not included in JCOPE_EC [67]. Iron cycling may also
explain the overestimates of biological production of CaCO3 and also ALK reduction (Figures 5g and
8f). The present model will need to be improved to account for these processes.

The JCOPE_EC also represented the ocean acidification indices pH and Ωarg, based on the model
outputs for temperature, salinity, DIC and ALK. The simulated values were consistent with observed
data, although the pHinsitu and Ωarg values in some parts in the Okhotsk Sea and the Japan Sea from
winter to spring were lower than expected (Figure 9a–d,i–l). This is probably a consequence of the
uncertainty in the climatology data for these parameters, and should be investigated more fully.

Sensitivity experiments, aimed at assessing which variables had most effect on the ocean
acidification indices, were performed using fixed values for temperature, salinity, DIC and ALK.
The results showed that seasonal variations in pHinsitu were largely governed by the corresponding
balances between temperature and DIC, although ALK had some influence in summer in model. DIC
was the main driver of the increases in the Ωarg from winter to summer, with some lesser effects of ALK
and temperature. Salinity had little effect on pH and Ωarg, except around the Changjiang River mouth.

At present, it is difficult to operationally acquire nowcast/forecast information on biogeochemical
variables at the basin scale. However, the JCOPE_EC was designed to use operational physical data
from the JCOPE2M. Thus, with further improvements in its design, the JCOPE_EC could become
an effective tool for providing realistic information about biogeochemical variables in the studied
marine area.

The daily snapshots of the distributions of chlorophyll-a, DIN, pH, DIC and ALK in spring
2015 in Figures 16 and 17 show that the JCOPE_EC was able to represent the distribution of
biogeochemical factors associated with the meandering of the Kuroshio Current and other eddy
phenomena. The Kuroshio Current transports water that is low in nutrients, DIC and ALK to
downstream regions. Prominent areas of enhanced chlorophyll-a concentrations were evident, and
their occurrence depended on ocean currents and the distribution of nutrient-rich waters (Figure 16).
These mesoscale phenomena involve complex factors affecting DIC and ALK, and so affect the associated
pH and Ωarg (Figure 17). Therefore, the JCOPE_EC has the potential to provide current realistic
information on ocean acidification indices, which vary in space and time because of various oceanic
phenomena, although validation and improvements in the model will be necessary.

By using this operational model (JCOPE_EC), we have already launched a trial to perform
a nowcast/forecast experiment targeting ocean acidification indices (pHinsitu and Ωarg), which are
reproduced with the nowcast/forecast operational ocean model products [35,36,38]. A website (https:
//www.marinecrisiswatch.jp/mcwatch/prediction/jcope/index.html) experimentally shows up-to-date
results of the nowcast/forecast system to demonstrate our studies effectively.

The current version of the JCOPE_EC system includes climatology damping conditions for some
biogeochemical variables, which highlights that the present model is diagnostic. To investigate the
mechanisms that drive the modeled ecosystem and the carbon cycle, we will develop a more prognostic
model without climatology damping in future studies, based on the present model. We also note that
there is an extreme lack of publicly available observed biogeochemical data for the Okhotsk Sea and
the East China Sea. We hope that the availability of observed data will improve, as, with more data,
we can reduce the uncertainty in future model outputs for these regions.

https://www.marinecrisiswatch.jp/mcwatch/prediction/jcope/index.html
https://www.marinecrisiswatch.jp/mcwatch/prediction/jcope/index.html
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Appendix A

Preliminary results showed that the chlorophyll-a maximum depth (Figure A1b) reproduced
using constant coefficients for cdom and Iopt were shallower than the observed depths (Figure A1a).
The chlorophyll-a reached a maximum at 0–50 m deep in the subarctic region of the northwestern
Pacific, and this gradually deepened with distance southwards, and reached a maximum at 100–150 m
deep in the subtropical region in summer (Figure A1a). The depths estimated by the preliminary
model at which chlorophyll-a reached a maximum in the subtropical region (10◦–20◦ N) were much
shallower (above 50 m) for all latitudes (Figure A1b).

To reduce the bias in the preliminary model results for the chlorophyll-a maximum depth,
we adopted values for cdom and Iopt that varied by latitude (Equations (39) and (40)) (Figure 3a,b).
Using this approach, the model reproduced the vertical distribution and maximum depth
of chlorophyll-a very effectively for the subtropical region, although the chlorophyll-a values
(Figure A1c–e) were higher than the observation values (Figure A1a,e). As the parameter dependences
of cdom and Iopt were nonlinear, we manually adjusted the parameter values after comparing the
modeled and observational results.

Previous NPZD models of the marginal seas of Japan have used various constant Iopt values.
For example, Kawamiya et al. [19–21] used an Iopt value of 48.8 W/m2 for station Papa (50.1◦ N,
144.9◦ W) [19,20] and the North Pacific [21], Yamanaka et al. [48] used an Iopt value of 104.7 W/m2

for the North Western Pacific, Sasai et al. [25] used an Iopt value of 100 W/m2 for stations S1 and K2,
Kishi et al. [22] used an Iopt value of 104.7 W/m2 for the subarctic region of the North Pacific, Guo and
Yanagi et al. [27] used an Iopt value of 150.0 W/m2 for the East China Sea, and Onitsuka and Yanagi [26]
used an Iopt value of 70.0 W/m2.

Edwards et al. [61] characterized growth-irradiance relationships from information about
308 growth-irradiance experiments performed on 119 species of marine phytoplankton sampled
from all major functional groups, and reported that the Iopt values did not vary among taxonomic
groups. However, all traits varied considerably within most groups, and optic-ocean isolates tended
to have lower Iopt values than coastal isolates. This implies that phytoplankton may change their
physiological characteristics depending on the light environment. Their study appears to be consistent
with the latitudinal difference we found for Iopt.

Various studies have used constant values ranging from 0.035 to 0.04 m−1 for cdom in the North
Pacific [19–22,25,48]. These cdom values represent light dissipation coefficients, which are linked to
the distribution of chromophoric dissolved organic matter. Nelson and Sigel [63] showed that the
absorption of surface chromophoric dissolved organic matter plus detrital particle at 443 nm was
0.005 m−1 in the subtropical region of the North Pacific but gradually increased to 0.05 m−1 in the
subarctic region. This indicates that the distribution of chromophoric dissolved organic matter make
more invisible the subsurface layer in the subarctic region than in the subtropical region. The latitudinal
difference for cdom used in the present study represents a change from 0.015 m−1 in the subtropical
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region to 0.045 m−1 in the subarctic region (Figure 3a), which is consistent with observed distributions
of chromophoric dissolved organic matter [63].Sustainability 2019, 11, 2677 26 of 30 
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Figure A1. Vertical distribution of chlorophyll-a (mg/m3) along longitude 165◦ E from JMA observations
in 2015 (a) and model outputs (b–e). The figure shows the sensitivity experiment results with (b) constant
Iopt (= 70 W/m2) and cdom (= 0.04 m−1); (c) constant Iopt (= 70 W/m2) and latitudinal differences for cdom;
(d) latitudinal differences for Iopt and constant cdom (= 0.04 m−1); and (e) latitudinal differences for Iopt

and cdom (the results of the model outputs as shown in Figure 4e–h).
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