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1  Introduction

The South China Sea (SCS) is located at the west side of 
the North Pacific and is the largest semi-enclosed mar-
ginal sea of the North Pacific Ocean, with a wide conti-
nental shelf and slope along the mainland coast of southern 
China. The upper layer large-scale circulation is predomi-
nantly seasonal, not only changing its magnitude, but also 
reversing direction, mainly because of the Asian monsoon 
seasonal cycle (Wyrtki 1961; Liu et  al. 2001). The basin 
scale circulation pattern of the SCS has been investigated 
in many studies incorporating in  situ measurements (e.g., 
Wyrtki 1961; Fang et al. 2002), satellite-based observations 
(Wu et al. 1998), as well as numerical simulations (Wang 
et al. 2006). During boreal winter, the basin scale cyclonic 
gyre forms a strong southwestward current known as the 
SCS western boundary current, flowing along the southern 
China continental slope and eastern Vietnam coast from 
Dosha Island to the region south of Vietnam. During boreal 
summer, the SCS western boundary current in the northern 
SCS (NSCS) becomes weak and variable, and needs further 
clarification (Fang et al. 2012).

On the other hand, deep, cold, and salty Philippine Sea 
water enters the SCS through the Luzon Strait and then 
flows out through the Taiwan, Karimata, and Mindoro 
Straits as shallow warm currents. This current system, a 
heat and freshwater conveyor, is called the South China 
Sea throughflow (Qu et  al. 2006). During the past sev-
eral decades, many investigations have produced widely 
varying estimates of the net volume transport through the 
Luzon Strait, from 0.5 to 10 Sv (1 Sv = 106 m3 s−1) (e.g., 
Wyrtki 1961; Hsin et  al. 2012). Mean net volume trans-
port through the Taiwan Strait is about 1 Sv in winter and 
2–3 Sv in summer (Fang et al. 2009; Hu et al. 2010). The 
mean outflow transports through the Karimata and Mindoro 
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Straits are, respectively, given as 3.6  Sv in boreal winter 
(Fang et  al. 2010) and 2.4 Sv during 2004–2007 (Qu and 
Song 2009). However, by comparison with these transport 
estimates through the straits around the SCS, transport 
estimates in the inner SCS are very scarce. To date, there 
have been no volume transport time series based on in situ 
observations in the SCS.

In this study, we carried out a 22-month mooring 
deployment of five pressure-recording inverted echo 
sounders (PIES) in the NSCS to obtain a 22-month-long 
record of volume transport across the mooring array. 
We then estimated a 22-year-long volume transport time 
series by developing and using an empirical relationship 
between the observed volume transport and satellite altim-
eter-determined sea surface height anomaly difference and 

investigated its mean and variability, including the seasonal 
cycle and fluctuations induced by mesoscale eddies.

2 � Data and methods

We deployed an array of five PIESs across the continental 
slope in the NSCS, along a satellite track (Pass114) of the 
TOPEX/POSEIDON and Jason-1/2 altimeters in October 
2012, and maintained it until July 2014 (Fig. 1a, b). This 
PIES array crosses over the gap between Hainan Island and 
Xisha Island (Fig. 1b, c). The PIES array is roughly perpen-
dicular to the bathymetry contours of the continental slope, 
i.e., the western boundary current in the NSCS, assuming 
the current flows along isobaths over the continental slope.
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Fig. 1   a The South China Sea (SCS) and its adjacent seas; 200  m 
isobaths denotes the position of shelf slope along which the SCS 
western boundary current flows, b detailed map of the observational 
site, c vertical cross-section view of bottom topography along the 
mooring array, d positions of hydrocasts used in computing the GEM. 
The TOPEX/POSEIDON and Jason-1/2 satellite altimeter track (Pass 
114) is indicated with blue dots in b. Red triangles (P1, P2, P3, P4, 

and P5) indicate the locations of the five PIESs. The black dots and 
green squares indicate the positions of Argo profiles and CTD casts, 
respectively. “H” and “X” in a and b indicate Hainan Island and 
Xisha Island, respectively. “TS”, “LS”, “MS”, and “KS” in a indi-
cate Taiwan Strait, Luzon Strait, Mindoro Strait, and Karimata Strait, 
respectively. Isobath depths are given in meters (color figure online)
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While the PIESs were making measurements, we per-
formed a ship-mounted acoustic Doppler current profil-
ers (ADCP, RDI-VM38, 38.4 kHz) survey along the PIES 
array and took five conductance–temperature–depth (CTD) 
casts at the PIES stations during 15–16 December 2012, to 
get data for comparison with the PIES mooring data.

The PIES measures the round-trip acoustic travel time (τ) 
between sea surface and bottom and the near-bottom pres-
sure (Pb). The τ measurements were used to estimate vertical 
profiles of temperature and specific volume anomaly by the 
gravest empirical mode (GEM) method (Watts et al. 2001; 
Zhu et al. 2003; Andres et al. 2008b) using 1355 profiles of 
temperature and salinity obtained by CTD and Argo meas-
urements (Fig. 1d). The GEM errors for temperature (spe-
cific volume anomaly) are 0.77 °C (2.41 × 10−7 m3 kg−1) 
in the upper 300 m layer and 0.15 °C (6.51 × 10−8 m3 kg−1) 
for a full-depth layer, respectively (Fig.  2). The GEM-
inferred temperatures on 16 December 2012 are in good 
agreement with those independent data measured by the 
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Fig. 2   Temperature (°C) and specific volume anomaly (m3 kg−1) GEM (upper panels) and their errors (bottom panels)
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Fig. 3   Temperature profiles obtained from CTD measurements 
(black) and the GEM at five PIES sites. The temperature profiles for 
P2–P5 stations have been offset rightward by 10 °C successively
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CTD casts at the five PIES stations during our cruise. Root-
mean-square differences (RMSDs) between the two meas-
urements are 0.76 °C in the upper 300 m layer and 0.29 °C 
for a full-depth layer, respectively (Fig.  3). This indicates 
the measurements of τ provide good proxy for estimation 
of the vertical profiles of temperature by the GEM method.

Each Pb record is processed to remove the tide and sen-
sor drift for estimating the barotropic velocity between 
station pairs as follows (Donohue et  al. 2010). Absolute 
geostrophic velocity (V) relative to a deep reference level 
includes both barotropic component (Vbt) and baroclinic 
component (Vbc) (Fig. 4):

The Vbc can be calculated from the PIES-measured τ 
data using the GEM-derived specific volume anomalies. 
The Vbt at level Z can be calculated from the pressure gra-
dient between two stations:

 where p1 and p2 are pressures at level Z1 from two stations, 
ρ is density, f is the Coriolis parameter (5.0 ×  10−5  s−1), 
and Δx is the distance between two stations (Fig. 4).

Since p1 and p2 are not always measured at the same depth, 
we need to use pressure records at different depth to calculate 
barotropic component. For this purpose, Vbt is divided into 
the temporal mean (Vbt) and its deviation (V′bt(t)):

The V′bt(t) can be rewritten as:

(1)V = Vbc + Vbt

(2)Vbt = (p1 − p2)
/

(�xf ρ)
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2
(t)

)

/

(�xf ρ) ≈

(

p′
1
(t)− p′

22
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)
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by assuming the temporal variation of deep pressure is 
small (p2′ ≈ p22′) (see Fig. 4 for definition of p22′). p1′ and 
p22′ can be obtained from the PIES pressure measurements 
at the two stations.

The velocity measured by the ship-mounted ADCP at 
a deep layer (800  m) and averaged between two stations, 
including both barotropic and baroclinic components, 
should be the same as that estimated by the PIES data:

 where tADCP denotes the time of ADCP measurement. 
Therefore, the temporal-mean barotropic component Vbt 
can be estimated as follows:

 V′bt(tADCP) can be estimated by applying Eq.  (4) to Pb 
while Vbc(tADCP) by using the GEM-derived hydrographic 
data during the period of the ship-mounted ADCP meas-
urement, respectively. The resulting Vbt at the four station 
pairs was within a range between −1.0 and 1.5  cm  s−1. 
Substituting Vbt given by Eq. (6) into Eq. (3) and estimat-
ing V′bt(t) from records of Pb and Vbc from records of τ, we 
obtained the absolute geostrophic velocity and correspond-
ing volume transport through the mooring section.

3 � Results

3.1 � Velocity structure

The vertical cross-section of the current velocity obtained 
by the ship-mounted ADCP measurements on 16 December 
2012 shows a southwestward current with a subsurface max-
imum velocity core of −44.0  cm  s−1 (Fig.  5a). The abso-
lute geostrophic velocity sections, estimated from the CTD 
data at five PIES stations by referring to the ship-mounted 
ADCP velocity at 800  m (Fig.  5b) and from the GEM-
derived hydrographic data and PIES pressure data as shown 
in Eqs.  (1)–(6) (Fig. 5c), are similar to each other: both of 
them show a southwestward current with a strong surface 
velocity. Since the barotropic component of current is at an 
order of several cm/s, it is smaller than the baroclinic compo-
nent (Fig. 5). The volume transports integrated over the sec-
tion for Fig. 5a–c are −8.4, −8.0, and −8.1 Sv, respectively. 
Agreement of velocity structures and volume transports for 
Fig.  5a–c indicates that our volume transports estimated 
using the PIES-measured Pb and τ are likely reasonable.

During 22  months of PIES measurement, the velocity 
structure and associated volume transport derived from 
PIES-measured Pb and τ have a large variability. As two 
examples, the velocity was northeastward with a maximum 
velocity of 104.1 cm s−1 (volume transport 17.4 Sv) on 1 

(5)VADCP = Vbt + V ′
bt(tADCP)+ Vbc(tADCP)

(6)Vbt = VADCP − V
′

bt(tADCP)− Vbc(tADCP)
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V

Fig. 4   Diagram (not to scale) of terms used in Eqs. (1)–(4)
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July 2013 (Fig.  5d) and southwestward (volume transport 
−7.8 Sv) on 9 April 2014 (Fig. 5e). Combined with satel-
lite altimeter data, we know the former case (Fig. 5d) cor-
responds to the arrival of a warm-eddy to the section while 
the latter case (Fig. 5e) to that of a cold eddy, that is, the 
velocity at the shelf slope of NSCS is strongly influenced 
by arrivals of mesoscale eddies. The 22-month mean veloc-
ity shows a weak northeastward current whose volume 
transport is 1.0 Sv (Fig. 5f).

3.2 � Estimation of a 22‑year volume transport time 
series

Using the mooring array data, we can estimate a 22-month 
volume transport time series (VTPIES) from October 2012 

to July 2014 across the section. However, this 22-month 
time series is not long enough to examine long-term vari-
ations and their statistical characters because the current 
during 22  months is strongly influenced by mesoscale 
eddies and the seasonal monsoon. To obtain a long-term 
volume transport time series, we established an empirical 
relationship between this 22-month volume transport time 
series and simultaneous satellite altimeter data following 
the methods that have been used previously for the Kuro-
shio and Ryukyu Current (Imawaki et al. 2001; Zhu et al. 
2004; Andres et al. 2008a).

The satellite track of Pass 114 (blue dots in Fig. 1b) is 
a descending track passing five PIES sites. The satellite-
measured sea surface height anomaly (SSHA) data along 
the track were first lowpass-filtered with a five-point filter 
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Fig. 5   Vertical distribution of velocity normal to the section for 
the mooring array: a measured by ship-mounted ADCP; b absolute 
geostrophic velocity estimated using the CTD data by referring to 
the ship-mounted ADCP velocity at 800  m; and PIES-derived geo-
strophic velocities estimated by using Eqs.  (1)–(6) on c 16 Decem-
ber 2012, d 1 July 2013 when a warm-eddy arrived, e 9 April 2014 

when a cold-eddy arrived; and f mean PIES-derived geostrophic 
velocity for the whole mooring period. Positive (negative) values 
indicate northeastward (southwestward) currents. Contour interval 
is 10 cm s−1. Thick line shows zero velocity. Triangles on the top of 
each panel indicate the locations of the PIESs
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corresponding to a spatial scale of about 29 km. The SSHA 
at each PIES site is highly correlated with τ measured by 
the PIES. The highest correlation coefficients were 0.91 
and 0.92 at P1 and P5, respectively. The SSHA difference 
between P1 and P5 (ΔSSHA) is well correlated with the 
40-day lowpass-filtered volume transport in the upper 200 
dbar (correlation coefficient is 0.93) (Fig. 6a), and is also 
correlated with similarly filtered volume transport in the 
deep layer below 200 dbar (correlation coefficient is 0.80) 
(Fig.  6b). Because the volume transport in the upper 200 
dbar is well correlated with the full-water-column transport 
(Fig. 6d), the ΔSSHA is, therefore, well correlated with the 
full-water-column transport (correlation coefficient is 0.90) 
(Fig.  6c). Using this empirical relationship, we then pro-
duce a 22-year time series of volume transport from 1992 

to 2014. We refer to this volume transport time series as 
VTNSCS (volume transport in the NSCS).

3.3 � Variability of the VTNSCS

The VTNSCS time series is in good agreement with the 
VTPIES time series (Fig. 7a). Their RMSD is 3.5 Sv, much 
smaller than the peak-to-peak range of about 25  Sv. The 
VTNSCS time series is also in good agreement with the vol-
ume transport (VTHYCOM) estimated from the 1/12º global 
Hybrid Coordinate Ocean Model (HYCOM) results (Bleck, 
2002) (blue line in Fig. 7b) with a RMSD of 3.0 Sv. Conse-
quently, our estimated VTNSCS is likely reasonable.

During the 22  years, VTNSCS fluctuates largely from 
−11.8 to 19.7  Sv, with a standard deviation of 5.3  Sv 
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(Fig. 7b). The 22-year mean VTNSCS is −1.6 Sv, indicating 
a southwestward current. Maximum VTNSCS occurred in 
August 2010, which was due to an exceptional anticyclonic 
eddy around Xisha Island (Chu et al. 2014). VTNSCS typi-
cally has a positive value in the warm season and a negative 
value in the cold season, which indicates a monsoon cycle 
response of the SCS circulation.

The power spectrum of VTNSCS shows the most promi-
nent energy at the annual period (Fig.  8). Two peaks at 
about 605 and 875-day are between 90 % (thin broken line 
in Fig. 8) and 95 % (thick broken line in Fig. 8) confidence 
levels, suggesting the quasi-biennial oscillation occurred 
in the SCS, but were weaker than that in the North Pacific 
(Zhu et al. 2004). The power spectra of VTNSCS show that 
the peak around 100-day period is not remarkable. This 
indicates that the mesoscale eddies with 100-day period, 
originating from the North Pacific Subtropical Countercur-
rent region (Qiu 1999) propagated westward (Yang et  al. 
1999; Zhu et al. 2004) may not arrive at the PIES sites or 
have been greatly weakened, possibly due to blocking by 
the northward-flowing Kuroshio as the eddies pass through 
the Luzon Strait.

Since the power spectrum of VTNSCS shows the most 
prominent energy peak at the annual period, we average 

and plot the 22-year VTNSCS time series by month and by 
season to examine the annual cycle and seasonal varia-
tion. The monthly averaged VTNSCS changes not only in 
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magnitude but also in direction (Fig.  9a). The monthly 
averaged VTNSCS has a maximum (3.6  Sv, northeast-
ward) in July and a minimum (−7.3 Sv, southwestward) 
in December with a standard deviation of 3.6  Sv. The 
annual range (peak-to-peak difference) reaches 10.9  Sv 
(Fig.  9a). This annual range is larger than those of the 
Kuroshio in the East China Sea (Andres et  al. 2008a) 
and south of Japan (Imawaki et al. 2001) and the Ryukyu 
Current southeast of Okinawa (Zhu et al. 2004), although 
its mean (−1.6  Sv) is much smaller than the means of 
Kuroshio and Ryukyu Current. The mean VTNSCS val-
ues for spring (April–May), summer (June–September), 
fall (October to early November), and winter (Novem-
ber–March) are 0.8, 2.3, −5.0, and −5.1 Sv, respectively 
(Fig.  9b) (the season is defined following Fang et  al. 
2002).

The reversal date of mean VTNSCS in spring when 
VTNSCS changes from southwestward to northeastward is 8 
April (thick black line in Fig. 9a), about 28 days after the 
reversal of wind direction over the SCS (figure not shown), 
while the reversal date of mean VTNSCS in fall (from north-
eastward to southwestward) is 13 September, about 15 days 
after the reversal of wind direction in fall.

4 � Summary and discussion

We successfully carried out a 22-month mooring deploy-
ment of five PIESs along a satellite altimeter track across 
the continental slope in the NSCS. Using the round-trip 
acoustic travel time data with the GEM method, we esti-
mated the temperature profile time series at the five PIES 
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stations. The GEM-inferred temperatures were in good 
agreement with those measured independently by the CTD 
casts at the five PIES stations during mooring period. Then, 
we calculated the absolute geostrophic velocity normal to 
the section and obtained a 22-month-long record of volume 
transports by combining the GEM-derived hydrographic 
data, PIES pressure data, and the ship-mounted ADCP 
velocity data.

By using this 22-month-long record of volume transport 
data with satellite altimeter data, we estimated a 22-year 
VTNSCS in the NSCS and determined its mean and variabil-
ity including the seasonal cycle and influence of mesoscale 
eddies. VTNSCS showed a significant seasonal reversal with 
an annual range of 10.9  Sv, which is much larger than 
its mean (−1.6  Sv). Mesoscale eddies greatly impacted 
VTNSCS with an upper range of about 20  Sv (Fig.  7b; in 
August 2010).

Currents near our mooring site are known to flow typi-
cally approximately along the isobaths of the SCS conti-
nental slope (Wang et  al. 2013), but no previous studies 
have obtained time series of volume transport over the 
SCS. Our winter mean VTNSCS (−5.1 Sv) is slightly larger 

than that (about −4 Sv) predicted by Liu et al. (2001) from 
Sverdrup theory using the monthly mean Comprehensive 
Ocean–Atmosphere Data Set (COADS) wind-stress curl 
over the SCS, while our summer mean VTNSCS (2.3  Sv) 
is quite different from their prediction (about −3.5  Sv). 
This suggests that the seasonal variation of VTNSCS in the 
NSCS may not exactly follow Sverdrup balance, because 
the SCS summer circulation is weak and more compli-
cated than that in winter (Fang et al., 2012). Nevertheless, 
our summer VTNSCS is the first long-term measurement 
evidence supporting the schematic circulation pattern in 
the NSCS, hypothesized by Fang et al. (2012) (see Fig. 3 
in their paper). The mean VTNSCS through fall and winter 
is about −5 Sv, larger in magnitude than the outflow trans-
port through the Karimata Strait (3.6 Sv) in winter (Fang 
et al. 2010), which indicates that part of the VTNSCS may 
flow out the SCS as a portion of the SCS throughflow, 
while some of the VTNSCS joins the inner SCS circulation 
in the SCS.

The mesoscale eddies near the Xisha Island are mainly 
from the south, propagated from the east of Vietnam, and 
also from the east, propagated from the region near the 

14oN

16oN

18oN

20oN

22oN

24oN

(a) (b)

 108oE  111oE  114oE  117oE  120oE

14oN

16oN

18oN

20oN

22oN

24oN

(c)

 108oE  111oE  114oE  117oE  120oE

(d)

−30

−20

−10

0

10

20

30

0

200

400

600

800

1000

1200

Fig. 11   SSHA distribution (cm) for a summer and b winter, and eddy kinetic energy (cm2 s−2) distribution for c summer and d winter. The tri-
angles in each panel indicate the PIES positions. The regions with depth shallower than 200 m are masked



672 X. Zhu et al.

1 3

Luzon Strait (Wang et  al. 2003, 2015). To examine how 
mesoscale eddies influence the VTNSCS, we plot the SSHA 
distributions when the VTNSCS reaches the minimum on 7 
April 2013 (Fig. 10a) and the maximum on 24 June 2014 
(Fig.  10b). When the VTNSCS took the minimum (maxi-
mum) value, a cyclonic (anticyclonic) eddy extended to 
the southeast side of observation line, making the VTNSCS 
southwestward (northeastward).

From the 22-year time series of VTNSCS, it is known 
that Sverdrup balance does not fully explain the season-
ality of the transport in summer. To examine the possible 
mechanism of the seasonal variability of VTNSCS, we plot 
the mean SSHA and eddy kinetic energy distributions cal-
culated using surface geostrophic velocity from SSHA data 
for summer and winter (Fig. 11). The SSHA distributions 
show a seasonal reversal structure corresponding to the 
southwestward and northeastward VTNSCS in summer and 
winter, respectively. However, the eddy kinetic energy near 
our mooring area is relatively small and almost the same 
in the two seasons, indicating that the mesoscale eddies 
do not exhibit clearly seasonal variability. This means that 
effects of mesoscale eddies can be removed by averaging 
the 22-year-long data, and also implies that the mesoscale 
eddies may not be an important factor of seasonality of the 
VTNSCS. The seasonal variability of the Kuroshio transport 
in the East China Sea also does not follow the Sverdrup 
theory, whose mechanism was explained as joint effect of 
baroclinicity and bottom relief (JEBAR; Kagimoto and 
Yamagata 1997). It is suggested that similar work, such as 
high-resolution numerical simulation, should be carried out 
to examine the possible mechanism of the seasonal vari-
ability in the SCS.

The methodology, using PIES near-bottom pressure 
data combined with ship-mounted ADCP data to estimate 
barotropic velocity, is applied here for the first time in a 
case lacking current meter measurements such as those 
provided by the current pressure-recording inverted echo 
sounder (Andres et  al. 2008b; Donohue et  al. 2010). The 
present method has its limitations due to formula approxi-
mations. The temporal-mean barotropic component veloc-
ity V̄bt, estimated in our geostrophic calculation using 
Eq. (6), were obtained from only single time ship-mounted 
ADCP measurement. The error of V̄bt is expected to be 
smaller than the error of the ship-mounted ADCP (about 
3  cm  s−1). We also note that the volume transport pre-
sented in this study is not the total volume transport of the 
SCS western boundary current, because our mooring array 
does not cover the area shallower than the water depth of 
P1 site (about 500  m, Fig.  1c). Nevertheless, the present 
study provides a useful long-term volume transport time 
series based on in  situ observation data, which will be 
opened to the community in a near future (http://www.scs-
data.icoc.cc/).
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