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Abstract  Relative dispersion ratio (RDR) can be used to quantify the deviation behavior of a water parcel’s trajectory caused by a 
disturbance in a hydrodynamic system. It can be calculated by using a standard method for determining relative dispersion (RD), 
which accounts for the growth of the deviation of a cluster of particles from a specific initial time. However, the standard method for 
computing RD is time consuming. It involves numerous computations on tracing many water parcels. In this study, a new method 
based on the adjoint method is proposed to acquire a series of RDR fields in one round of tracing. Through this method, the continu-
ous variation in the RDR corresponding to a time series of the disturbance time t can be obtained. The consistency and efficiency of 
the new method are compared with those of the standard method by applying it to a double-gyre flow and an unsteady Arnold- 

Beltrami-Childress flow field. Results show that the two methods have good consistency in a finite time span. The new method has a 
notable speedup for evaluating the RDR at multiple t. 

Key words  relative dispersion; particle tracking; adjoint method; computational efficiency 

 

1 Introduction 

Particle tracking is widely used in oceanographic stud-
ies involving either in situ observation or numerical simu-
lation. Its applications include rescue, marine oil spill de-
tection, and marine environmental research (Hackett et al., 
2009; García-Garrido et al., 2015; Kim et al., 2015). A 
good example of applying water parcel tracking is the 
autonomous Lagrangian current explorer float, which also 
plays an important role in ocean observations, such as the 
global ARGO program (Davis et al., 1992). Particle track-
ing is also used to find the source of certain substances 
distributed in seawater through backward tracking in vari-
ous areas, including coasts and oceans (Durgadoo et al., 
2017; Gelderloos et al., 2017). 

However, with particle tracking, a small disturbance on 
particles (either temporal or spatial) may cause a large 
path deviation. Particles released almost simultaneously at 
nearly the same location will exhibit dispersion behavior 
(Batchelor, 1952; Kuznetsov et al., 2002; LaCasce, 2008). 
Particles are normally assumed to be moving with the 
flow; as such, dispersion reflects the character of the flow  
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field. Thus, the trajectory of a single particle is insuffi-
cient to represent the complete information about mass 
transport in seas. As a result, particle dispersion, which is 
caused by some mechanisms such as mixing in a hydro-
dynamic system, is also defined to characterize material 
transport and advection velocity (LaCasce and Ohlmann, 
2003; LaCasce, 2008). 

To quantify the dispersion effect during particle track-
ing, Batchelor (1952) proposed the concept of relative dis-
persion (RD). LaCasce (2008) provided a simpler form that 
is described by releasing a cluster of particles in the vicin-
ity of x0 at the initial time t0. The RD of point t0 at time T 
with disturbance at t0 is defined in Eq. (1) as the variance 
of the displacement of that cluster of particles 

 0 0, , =D T tx  

    2

0 0 0 0
1 ,

1
 , , , ,

( 1)
i j i j
i j N

T t T t
N N


 


  x x x x , (1) 

where N is the total number of particles in a release ex-
periment, t0 is the releasing time, xi0 (1 ≤ i ≤ N ) is the re-
leasing position of the ith particle at the initial releasing 
time t0 in the vicinity of x0. The operator || || is the norm in 
an n-dimensional Euclidean space and denotes the sepa-
ration of particles from the center of mass (Batchelor, 
1952). x(T, xi0, t0) is the position of the particle at time T 
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released at xi0 at the initial time t0. If xi0 and t0 are kept 
constant and only T varies, x(T, xi0, t0) represents the tra-
jectory of the particle being released at position xi0 at time 
t0. T, xi0 and t0 are commonly separated with either ‘|’ or 
‘;’ to reflect the Lagrangian characteristics and emphasize 
the varying feature of the variable T and the fixing feature 
of the particle position xi0 at time t0 in defining the tra-
jectory. T. In this study T, xi0 and t0 vary together, so nei-
ther ‘|’ nor ‘;’ is used to avoid confusion. 

RD is an important index used to describe the charac-
teristics of particle separation. First, the value of RD repre-
sents the repelling (or attracting) feature of particles in a 
flow field. Second, the change in RD over the time elapsed 
after a disturbance may reflect different dispersion mecha-
nisms (Kraichnan, 1966; Bennett, 1984). For example, if 
dispersion is dominated by eddies with the same scale as 
the particle’s separation distance, the growth of RD is in 
accordance with the power law. If dispersion is dominated 
by large-scale circulation, RD increases exponentially in 
time. If the separation between particles is larger than that 
in a circulation system, the motion of each particle shows 
an independent behavior that linearly increases RD with 
time. If the dispersion is caused by a random walk, RD is 
constant. Lastly, RD shows the sensitivity of a particle’s 
trajectory to its initial state, i.e., it is an index of the first 
kind of predictability (Lacorata et al., 2014). 

D(T, x0, t0) depends on the initial distances among par-
ticles in a cluster. To eliminate the influence of the initial 
separation, we define the normalized RD as the relative 
dispersion ratio (RDR) as ,expressed as D(t, x0, t0)/D(t0, 
x0, t0), which is used to represent the dispersion feature of 
a flow field. The physical properties of RD (such as rep-
resenting the repelling or attracting the features of parti-
cles and reflecting the mechanism of dispersion) can be 
inherited by the RDR. According to the form of the RDR, 
it is also an important intermediate variable, i.e., the square 
of the amplification factor of the distance between the par-
ticle pairs in the calculation of the finite time Lyapunov 
exponent (FTLE; Pierrehumbert and Yang, 1993).  

The RDR or the derived variable FTLE has been ap-
plied to many oceanography problems. Sanderson (2014) 
verified the interface between a river and an ocean in an 
estuary in terms of the RDR calculated from a 3D flow 
field. Cucco et al. (2016) used RDR to indicate the influ-
ence of wind data on the predictability of sea surface 
transport, which is crucial to maritime search and rescue 
operations. The spatial structure of the RDR is also util-
ized to explain water exchange in seas. For example, 
Fiorentino et al. (2012) applied this method and explained 
the mechanism of sewage accumulation in coast water. 
Using high-frequency radar data and high-resolution sea 
surface drifter data, Shadden et al. (2009) studied the ex-
change between water masses and calculated FTLE to ver-
ify the barrier effect of a high-FTLE ridge. 

In observations and numerical experiments, the algo-
rithm for calculating RD or RDR consists of two steps. 
First, a cluster of particles around one specific location is 
labeled at the initial time and each particle’s exact posi-
tion is retained. Second, the RD in Eq. (1) is calculated by 

recording the displacement of the particles in the cluster 
as time proceeds. This ‘forward problem’ framework can 
capture a series of subsequent effects of a single initial 
disturbance, but it needs a considerable computation ef-
fort. To find the RDR at one point, at least two particles 
are tracked through integration. Normally, RDR spatial 
coverage is required to analyze the dispersion behavior of 
a flow field, and a considerable number of particles are 
needed to be deployed in the study area. Consequently, this 
process requires numerous computation tasks. Further-
more, many time instances or time spans, namely t0 and T, 
are required for the study, thereby enlarging the computa-
tion tasks. 

In this study, a new method for calculating RDR is pro-
posed by using the adjoint method to improve the com-
putation efficiency of RDR. The adjoint method is a gen-
eral approach to solve an inverse problem, which passes 
the derivative of one variable over state variables or some 
parameters backward to the whole process of a dynamic 
system (Le Dimet and Talagrand, 1986). In ocean studies, 
the adjoint method is widely utilized in sensitivity analy-
sis, data assimilation, parameter estimation, optimal ob-
servation network design, and stability analysis (Errico, 
1997; Daescu and Langland, 2013). 

In this study, the RDR derived via the new method is 
called Adj-RDR to be distinguished from the RDR based 
on the traditional method. In one round of calculation, a 
series of Adj-RDR fields can be obtained on the basis of 
particle dispersions at the final time T but with different 
initial time t. Thus, the potential disturbance at each time 
instance t to the final position of the particle at time T is 
determined. The new method is applied to two ideal flow 
fields to verify its consistency and efficiency. 

The remaining parts of the paper are organized as fol-
lows. The existing RDR acquisition methods based on the 
definition and flow mapping are introduced in Section 2. 
The derivation of the new algorithm based on the adjoint 
method is also described in Section 2. Two ideal flow field 
experiments for the verification of our new method are 
demonstrated in Section 3. The results are discussed in 
Section 4, and the conclusions are presented in Section 5. 

2 Methods 

In Section 2.1, the standard RDR calculation method is 
presented to explain the new method. An algorithm based 
on flow mapping (Haller, 2002) is also proposed to ex-
tend the RDR as a continuous spatial function of the ini-
tial state. In Section 2.2, the new algorithm based on the 
adjoint method for calculating RDR is introduced. 

2.1 RDR Calculation Based on a Standard Algorithm 

The trajectory of a particle in a flow field is controlled 
by the following equation: 

( ( , , ), )x t t t
t

 


 

x u x ,              (2) 

where ( ( , , ), )t t t u x x  denotes the velocity of the particle 
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( , )tx  at time t . Its solution can be formally written as 

    , , , , , d
T

T t
T x t t t t t        x x x u x x .      (3) 

Eq. (3) can be regarded as the mapping of x , the initial 
position of particle ( , )tx  at time t into its final position 

Tx  at time T, which can be written as 

:  T
t T  x x .                 (4) 

In Eq. (1), RD is calculated on the basis of the relative 
displacement among N particles. It involves the distance 
between N(N−1)/2 pairs of particles. To simplify the deri-
vation without losing generality, we define the distance of 
an arbitrary pair of particles as 

      2

, 0 0 0 0 0 0, , , , , ,i j i jT t T x t T x t d x x x , 

so that D(T, x0, t0) is the arithmetic mean of di,j(T, x0, t0) 
and defined as  
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1
, , =  , ,
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
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According to this definition, the RDR is expressed in 
the form of 
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If x  is chosen near the point on the undisturbed trajec-
tory xt = x(t, x0, t0) when x0 and t0 are fixed, then the two 
particles ( , )tx  and (xt, t) can form a particle pair, and their 
initial displacement is t t  x x x . At the final time T, 
their displacement is 

        , , , , , ,t tT t T t T t  x x x x x x  

                0 0, , , ,T t T t x x x x , 

which can be expanded at xt as 

     , , T
t t t t tT t r     x x x x x ,       (5) 

where r(∆xt) is the residual term with 
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and the Jacobian of the mapping is 
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

x x
x x

x
x x
x x

,   (6) 

where ( )T
t t x  describes the deformation rate of the in-

finitesimal perturbation of the initial position xt or the 
development rate of the distance between two adjacent 

particles near xt. 
Incorporating Eq. (5) into the matrix form of Eq. (1) ob-

tains 

     T
0 0 0 0 0 0, , , , , ,d T t T t T t    x x x x x ,   (7) 

where [ ]T denotes the transposition of a vector or a ma-
trix. 

When the higher-order infinitesimal is omitted, the RD 
of a particle pair with the initial distance ∆xt can be ex-
pressed as 

       TT
, , T T

t t t t t t td T t       x x x x x .  (8) 

d(T, xt, t) changes with the norm of disturbance ||∆xt|| 
and the direction of disturbance ∆xt/||∆xt||. Therefore, R(T, 
x0, t0) is a statistical variable, although it is normalized 
with the arithmetic average of di,j(t, x0, t0) = ||∆xt||

2. 
Haller (2002) provided a definition with a higher cer-

tainty by using the Cauchy-Green strain tensor at xt 

     
0

TT T T
t t t t t tC     x x x .        (9) 

The eigenvalue decomposition of 
0
( )T

t tC x  can be ex-
pressed as 

     
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0

T
t t n n
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

 
   
  


    


x , 

 (10) 

where the eigenvalue λi indicates the extension rate of the 
distance between the particles in a pair in the direction 
denoted by the eigenvector ξi. 

Dispersion is led by the maximum eigenvalue in the 
direction of the corresponding eigenvector; as such, the 
maximum eigenvalue is often used as the index of the 
square of the amplification factor of the distance between 
the particles in a pair in the calculation of FTLE (Haller, 
2002). In our study, the same notion is applied to calcu-
late RDR: 

1 2( , , ) max( , , , )t nT t    R x .         (11)  

The calculated R(T, xt, t) corresponds to the maximum 
RDR among all the initial displacement directions. In this 
study, the method described in this section is called the 
standard method. 

2.2 RDR Calculation Based on the Adjoint Method 

The above deduction reveals that if ( )T
t t x  is ob-

tained, then the RDR along the trajectory can be acquired 
on the basis of dispersion from t to T. However, in the 
standard RDR calculation described in Section 2.1, the 
independent integral of Eq. (3) is required to determine 

( )T
t t x  for different values of t. This procedure needs 

numerous computation tasks to calculate the RDR for 
continuous t. Therefore, a new method based on the ad-
joint method is proposed to simplify the calculation. 
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First, a set of cost functions Jk, k = 1, 2,···, n is defined as follows:

             T
0 0 0 0, sign , , , , , , , , d

T

k k k kt
J x T t x T t t T t t t t t          x x x x x x x x ,             (12) 

where γk = [δk1, δk2,···, δkn]
T with δki being the Kronecker 

delta, ( )t T   is the Dirac delta function, and sign( ) is 
the function that takes the sign of the variable with the 
absolute value of 1. It represents the distance between the 
two particles (x0, t0) and ( , )tx  in the kth dimension at 
time T which can be in its simple form: 

     0 0, , , , ,k k kJ x T t x T t  x x x x .     (13) 

Accordingly, a set of functionals with the constraints can 
be defined as 

  ( , , )k kL  x x x  

    T, [ ] , , , d
T

k kt
J t t t t

t
          


xx x x u x x , (14) 

where 
T

1 2( ) [ , , , ]k k k knt x x x    x  is the vector of the La-
grangian multiplier and k = 1, 2,···, n. 

 , ,t t x x  is the trajectory of particle ( , )tx , as such, the 
second term of ( , , )k kL  x x x  in Eq. (14) is always 0 be-
cause of Eq. (2). Therefore, we have 

( , , ) ( , )k k kL J    x xx x x x x .         (15) 

If tx x , then 

    0 0( , ) sign( ( , , ) ( , , ))k k kJ x T t x T t     x x x x x  

T( ) ( , , )d
T

kt
t T t t t     xγ x x .    (16) 

Eq. (14) is integrated by parts to obtain

                T T T T, , [ ] [ ] , , , d
T T k

k k k k k ktt
L J t t t t

t


    

          
    


x

x x x x x x x x x u x x  

    T T T T( , , ) ( ) [ ] ( ) , , , d
T k

k k k kt
J T t T t t t t t

t


   

           
     


x

x x x x x x x u x x .         (17) 

When the Jacobi operator is applied to Eq. (17), and Eq. (16) is inserted, the following equation is derived: 

       
T

, , , ,k k k kL T T t t         x xx x x x x x x  

           
T

T T
0 0sign , , , , , , , , , d

T k
k k k kt

x T t x T t t t t t T t t t
t





                 

 
        
 x x

xx x x u x x γ x x , (18) 

where 

    0 0sign , , , ,k k k kx T t x T t   x x x x . 

If we set 

    
T

T T[ ] , , ,k
k kt t t t T

t



 

      

    
 x

x
x u x x γ , 

(19) 

with   0k T x , i.e., 0k
 x , then Eq. (19) and its initial 

condition define a set of the adjoint functions of k
x , so 

Eq. (18) becomes 

   , ,k k kL t    x x x x x . 

Eq. (15) is transformed to 

( , , ) ( )k k kJ t    x x x x x .          (20) 

From Eq. (13), we can derive 

kJ x  

 0 0
1

( , , ) ( , , )
sign ( , , ) ( , , )

( , , ) ( , , )
k k

k k
n

x T t x T t
x T t x T t

x t t x t t

  
    

  
 
x x

x x
x x

. 

Comparing the above equation with Eq. (6), we can ex-
press the Jacobian matrix of the flow mapping ( )T

t x  
as the gradient of the cost function, kJ x : 

 
TT

1 1 0 0 1

T
0 0

sign( ( , , ) ( , , ))

sign( ( , , ) ( , , ))

T
t

n n n

x T t x T t J

x T t x T t J

  
   

   









x

x

x x
x

x x
. 

(11) 

By inserting Eq. (20) into Eq. (21) and considering the 
definition of k

x  we have 

1( ) ( ), , ( )T
t nt t        x x x .         (22) 

In Eqs. (20) and (22), x  cannot be xt, but we can evalu-
ate ( )T

t t x  with ( )T
t x  when x  is approaching xt. 

When Eqs. (19) and (22) are examined, no apparent re-
striction is imposed on tx x ; thus, ( )T

t t x  can be ex- 
pressed as 

1( ) ( ), , ( )T
t t nt t       x x x ,        (23) 

where k
x  is obtained from Eq. (19) when x  is set to xt 

in that equation. Then, the RDR can be calculated with 
Eq. (11). 
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As an adjoint equation, Eq. (19) is numerically inte-
grated from t T  to 0t t  with its initial condition 

  0k T x . The integration time range [t0, T] is split into 
M-1 sections with ∆t = (T − t0)/(M − 1) .  

Eq. (19) is separately integrated from tm = (m − 1)∆t + t0 
to tm+1 = m∆t + t0 separately as follows: 

    1

T
T

, , , dm

m

t k
kt

t t t t
t





             


    
 x

x
x u x x  

                              1 Tdm

m

t

kt
t T t   γ . 

The left-hand side is discretized with an implicit time- 

forward scheme. The right-hand side can be integrated anal- 
ytically by considering a Dirac function in the integrand. 
Thus, the numerical scheme of Eq. (19) is expressed as 
follows: 

       T
1 ,m m m m

k k k k mM          xx x u x γ  

1,2, ,m M  ,   (24) 

where 
( )

0(( 1) )m
k k m t t     x x  is the value of k

x  de-
fined at discrete temporal points, tm = (m − 1)∆t + t0, u(m)

 = 

u(x(tm, xt, t), tm) , and δmM is the Kronecker delta. xt is the 
position of the particle (x0 , t0) at time t , so u(m) can also 
be expressed as u(m) = u(x(tm, x0, t0), tm). 

If Eq. (24) is written in a matrix form under the initial 
condition of 

  0M
k
 x , we have 

         T
1 1

1 1, , , ,m m m m m
n nt                    

    xx x I u x x

m < M, (25) 

and    1 1
1 , ,M M

n
      

 x x I . 

Then, inserting Eq. (25) into Eq. (23), we can have the 
Jacobian of the mapping defined in Eq. (4) at different 
time steps tm along the trajectory, i.e., 

    T

1
m m

m
iT

t t
i M

t
 

         
 I xx u .      (26) 

The RDR expressed in Eq. (11) can be obtained based 
on the Jacobian of flow mapping in Eq. (26). In this way, 
the influence of the disturbance at a series of time in-
stance tm to the final location of the particle can be deter-
mined efficiently by evaluating the gradient of the flow 
field along the trajectory. 

The calculation of RDR via the adjoint method can be 
divided into four steps: 

1) Place a numerical particle on every grid point in the 
study area at a certain initial time. 

2) Track each particle in the flow field from the initial 
time to the final time T, and keep the position of the par-
ticle at time tm, 

it
x  and xu(i) at the same point at the 

same time, where i = 1, 2,···, M. 

3) Calculate ( )T
t t x  according to Eq. (26) based on 

the information in step 2. 
4) Calculate ( )

m m

T
t tC x  according to Eq. (9) and obtain 

RDR based on Eq. (11). 
However, 

mt
x  will not always be on the grid points simi- 

lar to those at the beginning, and some particles may even 
leave the study area. The interpolation is also used to get 
RDR on each grid point. 

3 Application of the Proposed Method    
in Two Ideal Flow Fields 

In particle tracking studies, two common questions are 
commonly encountered. One is, ‘what is the final particle 
distribution that can occur due to the disturbance at time 
(named as disturbance time t0)?’. The other one is, ‘what 
kind of disturbance at t0 can cause the final distribution of 
particles?’. The first one is called the forward tracking 
problem, which can be used to describe the spreading of 
pollutants at a certain time (named as result time T) and 
being discharged at different t0, e.g., different phases of a 
tidal period. The second one is called the backward track-
ing problem, which can be utilized in instances such as 
locating the oil spill source at t0 from the oil coverage in 
water at T. In both cases the final time T is normally re-
garded as a fixed value, and t0 is assumed as a varying 
variable. The RDR field at a continuously varying t0 is 
required to solve these problems. 

The RDR in the two problems can be obtained by using 
the traditional method described in Section 2.1. They can 
also be more efficiently solved by applying the new meth- 
od presented in Section 2.2. In this section, two widely 
used analytical flow fields, namely, two- dimensional dou-
ble-gyre flow and three-dimensional unsteady ABC flow, 
are adopted to verify the validity and efficiency of the 
new method proposed in Section 2.2. These flow fields 
are benchmark models for studying the Lagrangian chaos 
and mixing either 2D (Shadden et al., 2005; Coulliette   
et al., 2007) or 3D dynamic systems (Dombre et al., 1986; 
Haller, 2001). In the present study, two- dimensional dou-
ble-gyre flow and three-dimensional unsteady ABC flow 
are used in forward and backward tracking problems, re-
spectively. The RDRs of these two flow fields at different 
initial times are calculated by using the standard method 
and the newly proposed adjoint method. The results of 
both methods are compared to verify the effectiveness of 
the new method. 

For the convenience of reference, the RDRs calculated 
via the new method and the standard algorithm are called 
Adj-RDR and standard RDR, respectively. 

3.1 Double-Gyre Flow Case 

In this section, the forward tracking problem is solved 
for a double-gyre flow field. This flow field is designed 
as two adjacent closed gyres flowing at a constant speed. 
They are separated by a straight line named as the flow 
axis, which oscillates periodically with a small amplitude 
so that the two gyres can expand and contract alternately. 
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The flow field is given by 

1 1 2

1
2 1 2

1

π sin(π ( , ))cos(π )

( , )
π cos(π ( , ))sin(π )

u A f x t x

f x t
u A f x t x

x

 
   

, 

where 

2
1 1 1( , ) ( ) ( )f x t a t x b t x  ,  

( ) sin( )a t t  , ( ) 1 2 sin( )b t t   . 

In this study, the parameters are set as ω = 2π/10, ε = 0.1, 
A = 0.1, i.e., the period of the oscillation of the flow axis 
is 10 with an amplitude of 0.1 in the x1 direction, and the 
speed on the flow axis is 0.1, all variables in the ideal 
flow field are dimensionless.

 

The calculation area is set as 
[0, 2] in the x1-axis direction and [0, 1] in the x2-axis di-
rection. Resolution is set as ∆x1 = ∆x2 = 0.002 so that the  

grid number is 1000×500. The time step for obtaining the 
trajectory by integrating Eq. (3) is 0.002. In this study, a 
4th-order predictor and a 5th-order corrector scheme are 
used to determine the integrals. 

For calculating the RDR with the standard algorithm, 
particle pairs are released on the grid points with the ini-
tial displacement of 10−5. Six groups of experiments are 
set at t0 = 0, 4, 8, 12, 16, 20 and T = 20.

 

The results are 
displayed in column A of Fig.1, with the most remarkable 
feature of the double-gyre pattern. The high RDR occurs 
near the flow axis and forms several bands that stretch 
like a circle. The influence of the different values of t can 
be found in column A in Fig.1 from rows 1 to 6. The high- 

value band between the two gyres moves left and right 
because of the oscillation of the flow axis. The integral 
time length also alters the pattern to some extent. The 
number of the high-RDR bands and the RDR in the band 
increase as the integral time is extended. 

 

Fig.1 RDR of the double-gyre flow calculated by two methods. Column A, RDR calculated by the standard algorithm dis-
played as log10RDR; Column B, RDR calculated by the adjoint method, displayed as log10RDR; Column C, The absolute 
difference between RBR calculated by two methods. Rows 1 to 6 denote the results with initial disturbance time at 0, 4, 8, 
12, 16 and 20. 
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Adj-RDR is calculated in accordance with the proce-
dure described in Section 2.2 at a time step of 0.02. The 
reason for taking this value of ∆t is explained in the dis-
cussion. Six figures at t0 = 0, 4, 8, 12, 16, 20 are selected 
and presented in column B of Fig.1, which shows the 
RDR distribution with the same meaning as those in col-
umn A. However, the RDRs of different t0 are calculated 
by tracking the particles in one run. In Fig.1, the spatial 
pattern of Adj-RDR is consistent with the result of the 
standard algorithm. Their difference is less than 15% of 
the absolute value in column C of Fig.1, but Adj-RDR is 
higher than the result obtained via the standard algorithm. 
The overestimation of Adj-RDR occurs in the low- value 
region of RDR, e.g., the center of the gyres. The differ-
ence between the two algorithms in a high-value area, 
where we are usually most interested in, is smaller than 
that in a low-value area. Therefore, the result of Adj- RDR 
is acceptable in the double-gyre test. 

The area-averaged RDRs obtained with both methods 
are also compared in Fig.2. Adj-RDR is calculated at a 
time step interval of 0.02, so it is represented as a con-
tinuous line. The RDR based on the standard algorithm is 
shown as 6 points in the figure. When t0 > 8, i.e., the track 
span is shorter than 12, Fig.2 shows a good correspon-
dence between the two RDRs based on different algo-
rithms. The value produced via the new methodis higher 
than that obtained via the standard method. If t0 < 8, i.e., 
the track span is longer than 12, then Adj-RDR exponen-
tially grows with the track span, but the standard RDR 
appears to reach the maximum value at 107. 

The computation time consumed by using the two meth- 
ods is compared. A desktop computer with a 3.6 GHz AMD 
3700x processor is used to calculate the RDR with MAT- 
LAB 2017b. ‘Tic’ and ‘toc’ commands are utilized to keep 
time. The computation time is the average of the results of 
three rounds of calculations. The standard method takes 
138.1 ± 0.5 s to obtain the distribution of the RDR in six 
cases (t0 = 0, 4, 8, 12, 16, 20). By comparison, the adjoint 
method needs 136.0 ± 0.5 s to determine the distribution of 
the RDR in 100 cases at t0 of 0 to 20 with a time step of 
0.2. 

 

Fig.2 Area averaged RDRs calculated by both methods con- 
tinuous line, Adj-RDR; point, RDR by standard algorism. 

 

3.2 Backward Tracking in an Unsteady ABC Flow 

As mentioned at the beginning of this section, the RDR 
can be used to determine the source of matter in oceans 
by solving the backward tracking problem. In the applica-
tion of backward tracking, a new flow field is formulated 
by reversing the time sequence and taking the opposite 
sign of the original flow field. Thus, a new flow mapping 
is defined as 

:  t
T T  x x .             (27) 

Then, the RDR can be calculated for this flow mapping 
by using the standard algorithm or the adjoint method as 
the forward tracking problem. 

The physical definition of the derived RDR differs from 
that obtained through forward tracking, as in Section 3.1. 
The high RDR, in this case, indicates the area where par-
ticles gather (Haller, 2015). 

In this section, the unsteady ABC flow is used as the 
test flow field, which is given by 

1 3 2

2 3 1

3 2 1

1
sin(π ) sin( ) cos( )

2

1
sin(π ) cos( ) cos( )

2

cos( ) cos( )

u A t t x C x

u A t t x B x

u C x B x

       
       
   



. 

In this study, the parameters are set as follows: A = 
3 , 2B   , and C = 1. The computational domain is 

in the cube {x = (x1, x2, x3)| xi ∈ [0, 2π], i = 1, 2, 3} which 
is divided into 100×100×100 grids. The track span is set 
as 8, which is four periods of motion. 

In the backward tracking problem, t varies from t0 = 8 
to T = 0. It can be transformed into a forward tracking prob-
lem by assuming that 0t t T t   , and the new velocity 
field is as follows: 

1 3 2

2 3 1

3 2 1

1
(8 )sin(π(8 ))   sin( ) cos( )

2

1
(8 )sin(π(8 ))  cos( ) cos( )

2

cos( ) cos( )

u A t t x C x

u A t t x B x

u C x B x

          
          
  



 

 


.
 

The original backward tracking problem here is to find 
the disturbance at t that can generate the end state at T. In 
the transformed forward problem, the goal is to obtain the 
RDR when t  is from 0 to 8 and the final state is 8T  . 
When the standard algorithm is used t = 0, 0.4, 0.8, 1.2, 
1.6, that corresponds to t = 8, 7.6, 7.2, 6.8, 6.4 is chosen. 
When the new adjoint method is applied, t  is selected 
from 0 to 8 with a time step of 0.02. 

The RDR distribution on the three surfaces of the cal-
culation cube is shown in Fig.3 when 0t  , i.e., t = 8 is 
chosen. The results from the standard algorithm and the 
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adjoint method are presented in Figs.3a and 3b, respec-
tively. They display the ‘hollow’ pattern of a high value 
around the vortex tube. However, the RDR obtained with 
the adjoint method has a ‘higher contrast’ than that de-
termined with the standard algorithm. Therefore, Adj-RDR 
is higher than the standard RDR in the high-value zone, 
whereas the former is lower than the latter in the low- 

value zone. This pattern can also be found in Fig.3c, which 
shows the difference between the RDRs acquired by both 
methods. 

The RDR distribution at different initial times on the 
three slices in the middle of the cube, i.e., x1 = π, x2 = π, 
and x3 = π, is plotted to express the results more clearly. 
The RDRs calculated by the standard algorithm and the 
adjoint method are displayed in Figs.4 and 5, respectively. 
Both RDR distributions are similar. However, the RDR in 

Fig.5 has a ‘higher contrast’ than that in Fig.4. Further-
more, the RDR distribution in Fig.5 becomes blurrier as 
the time span between t0 and T is prolonged. 

The time series of area-averaged Adj-RDR and standard 
RDR are shown in Fig.6. Adj-RDR exponentially grows as 
t increases. By comparison, the standard RDR grows ex-
ponentially when t < 6; as it reaches the maximum value, it 
no longer grows as t increases. 

The time consumed by using the two methods in the 
ABC flow is compared. It is a 3D flow field, so the com-
putation time is very long. For this reason, a parallel MAT- 
LAB m file is written and run in 10 threads. With the stan-
dard method, obtaining the RDR field in 1 case with t = 8 
takes 1331.3 s. With the adjoint method, determining the 
distribution of the RDR field in 400 cases with t from 8 to 
0 needs 2354.7 s.

 

Fig.3 RDR distribution of unsteady ABC flow field on three surfaces of the cube. (a), RDR calculated by the standard algo-
rithm as log10RDR; (b), RDR calculated by the adjoint method as log10RDR; (c), the absolute difference between RBR cal-
culated by two methods time range is for T = 0 and t0 = 8. 

 

Fig.4 RDR distribution of unsteady ABC flow field calculated by the standard algorism on three inner sections of the cube 
with different initial time. The first row denotes x1 = π; second row denotes x2 = π; third row denotes x3 = π. The columns 
from 1–5 correspond to the initial time t = 8, 7.6, 7.2, 6.8 and 6.4. The color in the figures denotes the value log10RDR. 
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Fig.5 Same as Fig.4, but calculated by adjoint method.  

 

Fig.6 The time series of area-averaged Adj-RDR and stan-
dard RDR. The red line denotes the continuous time series 
of the sum of Adj-RDR change with different initial time 
and the black dots denotes the sum of RDR calculated by 
standard algorithm. Each dot is averaged from an inde-
pendent experiment with the disturbed particles released 
at t. 

4 Discussion 

4.1 Computational Efficiency 

The RDR field calculated with the adjoint method is 
almost continuous with respect to. By contrast, the RDR 
field obtained with the standard method is confined to a 
certain instance of t. The calculation procedure needs to 
be carried out several times to determine the influence of 
disturbance from time t to T. Therefore, the new method 
is beneficial. The computational complexity of the two 
methods is briefly analyzed in this section. 

In the standard method, particle tracking is the most 
time-consuming procedure. In the adjoint method, parti-
cle tracking and the calculation of Eq. (26) are both time 
consuming. Either particle tracking or particle tracking 
plus Eq. (26) consumes more than 90% of the calculation 
time of the corresponding method in the two examples in 
Section 3. Therefore, we focus on the comparison of the 
computational complexity of particle tracking and the cal-
culation of Eq. (26). 

The calculation cost of tracking one particle in an nd - 

dimensional space in one time step needs at least O(nd
2) 

multiplications when a simple discrete form of Eq. (2), i.e., 
Eq. (28), is used to track the particle: 

 T( 1) ( 1) ( )m m mt   xx I u x .        (28) 

Every calculation of Eq. (28) is assumed as one unit of 
calculation here. By using the standard method, nd

 + 1 
particles should be tracked in the nd -dimensional space to 
determine the RDR by calculating Eq. (6) at one point. If 
nt time steps are needed to track a particle from t0 to T, 
then the computation cost to obtain R(T, x0, t0) is nt × (nd 

+ 1). The computation cost is nt × (nd + 1) × nr for the dis-
turbance at a single time instance t0 to determine the RDR 
field with nr sampling points. If a series of RDR fields is 
needed with respect to nc disturbance time instances, e.g., 
the 6 cases in Section 3.1, nc independent calculations with 
different tracking time steps are needed. The disturbance 
time necessary. t is spread evenly between t0 to T for nc 
cases. Then, the time step number in each case decreases 
from nt to 0, while t is from t0 to T. Therefore, the total 
computation time to complete the whole calculation is 
nc/2 × nt × (nd + 1) × nr. 

In the adjoint method, the computation cost includes 
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the computation of Eq. (26) and the computation of parti-
cle tracking. The computation cost of Eq. (26) is nd times 
of Eq. (28). Particle tracking should be calculated from t0 
to T (nt steps) and the calculation of Eq. (28) from T to t0 
(nt steps) to acquire the RDR by using the adjoint method 
at one point. Therefore, for the continuous time series of 
Adj-RDR field at nr points, the computation cost is nt × 

(nd + 1) × nr. 
Theoretically, the adjoint method saves the computa-

tion cost nc/2 times of that of the standard method in solv-
ing the inverse problem. In real calculation, the adjoint 
method needs to record and read the data of particle posi-
tion and velocity, so the calculation time tends to be longer 
than the theoretical value. The speedup is less than nc/2, 
but it is still very notable. In this study, the speedup ratio 
of the double-gyre example is about 16.9 times, which is 
less than 50 times in theory. For the unsteady ABC flow, 
the speedup ratio is about 113 times, which is also less than 
200 times in theory. 

In addition to time cost, the memory cost of the adjoint 
method is determined to calculate the RDR. The extra ran-
dom-access memory (RAM) occupied by the Adj- RDR 
method mainly occurs in step 3 of the calculation proce-
dure. In step 3, memory needs to save the spatial diver-
gence tensor of the velocity for each particle of the cur-
rent time step. The tensor is d times larger than the veloc-
ity vector, where d is the spatial dimension; as such, the 
RAM usage of step 3 is also d times of the particle track-
ing process. For the double-gyre experiment in Section 
3.1, the tensor takes up 15.305 megabytes of RAM. 

Apart from the RAM usage, extra disk space is required 
in the Adj-RDR method to record the trajectory informa-
tion compared with that in the standard method. The data 
size of the trajectory can be expressed as follows: 

File’s data size = Number of time steps × Number of re-
leased particles × Dimension of flow filed (float data). 

The adjoint method requires a relatively high resolution 
in space and time, so the footprint of the trajectory infor-
mation is a large amount of data. In the case of the dou-
ble-gyre experiment in Section 3.1, the total size of the 
trajectory files is 6.872 gigabytes. In general, the extra 
cost of RAM and disk space is acceptable. 

4.2 Computation Accuracy 

Adj-RDR has the same spatial structure as that calcu-
lated by the standard algorithm in forward and backward 
tracking applications, as displayed in Section 3. However, 
Adj-RDR is higher than the standard RDR, especially 
when the calculation span is large. In the time series of 
the area-averaged Adj-RDR and standard RDR shown in 
Figs.2 and 6, Adj-RDR exponentially grows as the calcu-
lation time span increases. For the standard RDR, the dis-
persion ratio grows exponentially during a limited time; 
afterward, the area-averaged RDR appears to reach the 
maximum value. This difference occurs because the ad-
joint method calculates the tangent linear dispersion ratio 

in the smallest neighborhood along the particle trajectory. 
In the standard algorithm, the initial pair is finally sepa-
rated into two tracks regardless of the size of the initial 
disturbance because of the effect of the dispersion. When 
the particle pairs are apart far enough, the relative motion 
between the particle pairs is basically random. Statisti-
cally, the average distance is no longer growing. Ding and 
Li (2007) explained the saturation phenomena in the study 
on the nonlinear FTLE. If the initial disturbance is small, 
the standard RDR is consistent with Adj-RDR in a longer 
time (Fig.7). 

The RDR obtained by the adjoint method is sensitive to 
the time step in the calculation because of the tangent lin-
ear approximation. A set of experiments of the double- gyre 
flow field (as in Section 3.1) is used to discuss the rela-
tionship between the time step ∆t and the Adj- RDR. A 
standard algorithm with the initial disturbance δx = 10−5 is 
used as a benchmark result. Figs.8 and 9 illustrate the in-
fluence of different time steps on the difference in the two 
methods. The smaller the time step, the smaller the dif-
ference in the RDR between the two methods. Moreover, 
in Fig.9, the difference increases when ∆t = 0.032. Thus, 
when ∆t is larger than the upper limit, the difference in-
creases rapidly with ∆t. However, when ∆t is less than the 
time step, the decrease in ∆t slightly affects the reduction 
in the difference. In the above experiment, ∆t = 0.02 is used 
for the compromise between efficiency and accuracy. 

Tangent linear approximation is introduced to Adj-RDR 
in the derivation of Eq. (24), and the second and higher- 

order term of ∆t is disregarded. Therefore, an upper limit 
of ∆t should be set to ensure that ( ( , , ), )tt t t  xu x x  does 
not change significantly with ∆t. The limit is also related 
to the characteristics of the flow field, i.e., the temporal 
variation in ( ( , , ), )tt t t  xu x x . 

 

Fig.7 Same as Fig.2, but the results of the standard RDR 
with a smaller initial disturbance scale are supplemented. 
The red line represents the RDR at each initial time cal-
culated by the adjoint algorithm. The blue, cyan, and yel-
low dots correspond to the RDR calculated by the stan-
dard algorithm, and the initial distances between the par-
ticle pairs are 10−5, 10−6, and 10−7, respectively. 
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Fig.8 Absolute difference between Adj-RDR and standard RDR (Fig.1A). Columns A, B, C, D, and E denote the results 
obtained via the adjoint method with time steps of 0.002, 0.008, 0.032, 0.128, and 0.512, respectively. Rows 1 to 6 denote 
the results with initial disturbance times at 0, 4, 8, 12, 16, and 20. 

 

Fig.9 Sum of the absolute difference between Adj-RDR 
and standard RDR, and the change with time step. 

4.3 Limitations of the New Method 

The RDR calculated by the adjoint method is blurrier 
in distribution as the time span between t0 and T is pro-
longed (Fig.5). Therefore, the accuracy of the new method 
is limited when the time span is long. 

The reason for the time span limitation is that R(T, xt, t) 
is calculated on the particle in the adjoint method, i.e., 

RDR is mapped on xt, which varies with t. For compari-
son, in the standard method, RDR is mapped on the initial 
location where the particle is released. In an aperiodic 
flow field, when t is farther away from t0, xt is farther 
away from the mesh point where the particles are released 
(Fig.10). In the area near the boundary, some particles 
leave the study area. In other words, the number of sam-
pling points in the study area is reduced, and the distribu-
tion of sampling points is not uniform when t − t0 is high. 
This effect is more significant for the flow field with an 
open boundary because particles eventually flow out of 
the study area. 

However, if a study aims to calculate the structure of 
the RDR in a finite time, such as several tidal periods, the 
adjoint method is valid for the application. 

5 Conclusions 

In this study, a new method for calculating RDR is 
proposed by using the adjoint method. The validity of the 
method is verified via two idealized numerical experi-
ments. The results reveal that the spatial structure of RDR 
calculated with the adjoint method is consistent with that 
obtained with the standard algorithm. The new method is 
successful in forward and backward tracking cases. Its 
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Fig.10 Adj-RDR distribution of the unsteady ABC flow field mapped on the location of a particle. 

computational efficiency is also exhibited with a speedup 
of more than 15 times in the two examples. 

The new method has some limitations. The spatial reso-
lution of RDR decreases as the tracking time is extended. 
Moreover, RDR increases as the integration time is pro-
longed. In many cases, this limitation can be avoided be-
cause the RDR of a finite time is needed. RDR calculated 
for a long time loses its physical significance because of 
the nature of the flow field itself. 

In conclusion, the newly developed method for com-
puting RDR via the adjoint method can provide the time 
evolution of the dispersion characteristics of a flow field. 
The present study helps elucidate the mass or momentum 
distribution in seas. In future studies, the new method will 
be applied to real cases in oceans. 
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