東シナ海における外洋起源栄養塩の輸送量と 低次生態系への影響

郭 新 宇

水環境学会誌 第34卷 第9号 (2011)

pp.293~296 別刷 社団法人 日本水環境学会

東シナ海における外洋起源栄養塩の輸送量と低次生態系への影響*

郭 新 宇

1. はじめに

地球温暖化の進行がほぼ確実視されている現在,その 影響を予測,評価することは喫緊の課題である。温暖化 の海への影響については,水位上昇の臨海域への影響や 水温上昇が生態系に及ぼす影響が中心的課題と見なされ がちであるが,今世紀に予想される世界的人口増加によ る食糧問題の深刻化を考えれば,世界の海の水産資源生 産力に対する温暖化の影響は水位上昇問題にも匹敵する 重要課題であるといえる。

海の一次生産力(基礎生産)を支えるのは栄養塩であ る。温暖化にともなって鉛直成層が強くなり,外洋では 深層からの栄養塩供給が減少することがほぼ確実であ る^{1,2)}が,沿岸域ではその影響は大きくないと考えられ ていた。これは,沿岸域の栄養塩が主として河川水や地 下水の流入によって陸から供給されていると考えられて いたためである。

しかしながら、この常識を覆すような知見が東シナ海 や瀬戸内海の近年の研究で得られつつある。例えば、東 シナ海では約5割の栄養塩が黒潮中層水起源であるとい われており³⁻⁵⁾、東シナ海より遙かに閉鎖的な瀬戸内海 では、その閉鎖性にもかかわらず約6割もの栄養塩が外 洋起源と推定されている^{6.7)}。温暖化による鉛直成層の 強化を考える限り、これらの外洋起源栄養塩も温暖化に より減少する可能性が高い。一方、地球シミュレータに よる高解像度大気海洋結合モデルの温暖化予測による と、80年後には黒潮の流速が現在より3割大きくなる ことが報告されている⁸⁾。海洋力学的に考えると、黒潮 の強化は東シナ海や瀬戸内海のような黒潮沿岸域への黒 潮中層水の進入に有利に働き、外洋起源栄養塩の供給を 増やす効果がある。このように、気候変動によって沿岸 域の栄養塩環境がどのように変化するかについては、未 だに定まったシナリオは存在せず、その影響過程を早急 に解明する必要がある。

本研究では、東シナ海を対象とし、三次元海水流動モ

* Transport Flux of Oceanic Nutrients and Its Influences on the Low Trophic Ecosystem in the East China Sea

デルに海洋低次生態系モデルを導入し、栄養塩と基礎生 産を代表する Chl.a の空間分布と季節変動を再現し、外 洋起源栄養塩の輸送量をモデル結果から算出し、従来の ボックスモデルの結果と比較する。また、基礎生産に光 が必要であるため、外洋起源栄養塩が有光層へ運ばれな ければ、植物プランクトンに利用されない。したがって、 外洋起源栄養塩の基礎生産への影響を確認するために、 本研究では黒潮流域の栄養塩濃度を人工的に変えたモデ ルの感度実験を行い、外洋起源栄養塩の基礎生産に対す る影響を明らかにする。

2.方法

本研究で用いた海水流動モデルは、Princeton Ocean Model をベースにして開発されたものである^{9,10)}。東シ ナ海を対象とするモデルと西北太平洋を対象とするモデ ルをネスティング手法で結合し、黒潮のような代表的な 海流を東シナ海の流動モデルに導入した⁹⁾。東シナ海の 流動モデルを駆動する外力は、開境界に与える月平均の 流速・水温・塩分・水位、海面に与える月平均の風応力・ 熱フラックス・淡水フラックス、河口域に与える月平均 の河川流量である。さらに、潮汐同化モデル¹¹⁾から得 られた調和定数を利用して求めた潮汐(潮位)と潮流を 開境界の水位と流速に加えた。したがって、本研究で用 いた流動場は潮流を含み、かつ季節的に変動するものと なっている。

本研究で用いた海洋低次生態系モデルは NORWECOM¹²⁻¹⁴⁾をベースにして開発されたものである¹⁵⁾。このモデルでは、3種類の栄養塩(硝酸塩,リン 酸塩とケイ酸塩),2種類の植物プランクトン(珪藻類 と鞭毛藻類),2種類のデトリタスといった7つのコン パートメントが考慮されている。モデルは水中と底質を 別々に取り扱っている。水中では植物プランクトンの光 合成,呼吸,死亡と沈降,デトリタスの分解と沈降,懸 濁粒子と植物プランクトンの光への遮蔽効果といったプ ロセスを,底質ではデトリタスの分解,脱窒,埋没,再 懸濁といったプロセスをモデルに取り入れている。栄養 塩は底質,大気,河川,開境界(台湾海峡と黒潮流域) から供給されている。

モデルの計算領域は図1に示されている。流動モデル と生態系モデルは冬の初期条件から同時に計算し始め, 月平均の境界条件を用いて3年間計算し続けた。解析に は3年目の結果を使用した。なお,モデル計算に使われ たパラメータと観測データに関しては,別の文献¹⁵⁾に 詳しく述べられている。

3. 結果

モデル結果の検証は、夏と冬の栄養塩濃度の気候値分

図1 モデル領域。海岸線に沿ってプロットした黒丸は河川の位置を示している。200 m 等深線を陸棚縁と定義し,その上に黒丸を プロットしている。"PN"は陸棚縁に沿って流れる黒潮を横切る断面である。"FA", "FB", "FC", "FD", "FE" は本文に使わ れた栄養塩フラックスを示している。

布¹⁶⁾および気象庁の観測によって東シナ海陸棚縁近傍 で得られた栄養塩濃度と Chla 濃度を用いて,生態系モ デルの結果と比較することにより行った¹⁵⁾。これらの比 較から,生態系モデルは東シナ海の陸棚上における栄養 塩と Chla の空間分布および季節変化を大まかに再現で きることが分かった。さらに,水深 200 m の陸棚縁に沿っ て求めた栄養塩濃度は観測値に近く,栄養塩輸送フラッ クスの計算に十分な精度を有することもわかった。

東シナ海への栄養塩供給は主に長江,台湾海峡と黒潮 流域からである⁴⁾。黄海からの栄養塩供給もあるが,そ の量は長江,台湾海峡と黒潮流域からの供給量と比べる と,無視できるほど小さい⁵⁾。長江と台湾海峡からの供給 量はそれぞれに定義された場所で比較的求めやすいが, 広範囲で流れる黒潮からの供給量はなかなか求めにくい。 本研究では黒潮流域からの栄養塩供給量を東シナ海の陸 棚縁に相当する 200 m の等深線を横切るフラックスと定 義し,200 m の等深線と重なるグリッドでのモデル結果 (流速と栄養塩濃度)を用いて,フラックスを計算する。

モデル結果から求めた長江,台湾海峡と黒潮流域から 東シナ海への流量と栄養塩フラックスの年平均値を表1 に示している。黒潮流域から東シナ海陸棚上への流量 は1.53 Sv(1 Sv=10⁶ m³·s⁻¹)で,台湾海峡からの流量 (1.15 Sv)と同程度であるが,長江流量の50倍になっ ている。一方,硝酸塩,リン酸塩とケイ酸塩のフラック スを比較すると,黒潮流域からの供給が最も多く,長江 のそれらの9倍,40倍と6倍と,台湾海峡のそれらの 6倍,25倍と3倍となっている。栄養塩フラックスの 比が流量と異なる理由は栄養塩濃度の違いにあるが,3 種類の栄養塩フラックスの比の違いは黒潮水,長江水と 台湾海峡水の中に含まれた3種類の栄養塩の比の違いに 由来するものである。 表1 黒潮流域, 台湾海峡と長江からの流量と栄養塩フラック ス。"KS"は黒潮流域から, "CJ"は長江から, "TW"は 台湾海峡からのものである。フラックス以外に, 本文で 使われた比も示している。なお,1Svは10⁶ m³·s⁻¹である。

	Water (Sv)	DIN (kmol·s ⁻¹)	DIP (kmol·s ⁻¹)	Si (kmol·s ⁻¹)	DIN/DIP
KS	1.53	9.36	0.72	18.22	13
CJ	0.03	1.06	0.018	2.98	59
TW	1.15	1.58	0.28	6.19	6
KS/CJ	50	9	40	6	
KS/TW	1.3	6	2.5	3	

表1に示された年平均値は顕著な季節変化を有す る¹⁵⁾。その季節変化は主に長江流量,台湾海峡流量と黒 潮の陸棚域への流入流量によるものである¹⁷⁾が,河川 および海水中の栄養塩濃度の変化も寄与している¹⁵⁾。ま た,黒潮流域からの栄養塩フラックスに関するもう一つ の重要な特徴は,表1に示された値が黒潮流域から陸棚 域への流入量と陸棚域から黒潮流域への流出量の差で あって,流入量と流出量は共に両者の差より10倍ほど 大きいことである。

栄養塩の植物プランクトンへの利用には光条件が必要 であるため、黒潮流域から東シナ海陸棚域への栄養塩輸 送量があっても、基礎生産に本当に使われたかどうかを 別の方法で確かめなければならない。本研究では、黒潮 流域の栄養塩濃度のみを人工的に増加させ、現実の季節 変化を再現した計算と同じ条件でモデルの再計算を行っ た。両者の差から、黒潮流域の栄養塩濃度の変化はどの ように植物プランクトンの現存量に影響を与えるかを検 討した。

黒潮流域の栄養塩濃度が3割増えた計算(ケース

+30%)と現状再現計算(標準ケース)で得られた PN 断面における硝酸塩濃度と Chl.a 濃度の差をそれぞれ図 2と図3に示している。硝酸塩濃度の差(図2)を見る と,黒潮起源の栄養塩の増加は主に陸棚域の底層にある ことが分かる。冬は,強い鉛直混合により上下の濃度差 が小さいことから,黒潮起源の栄養塩が鉛直混合により 表層に運ばれていることが推察される。夏に,栄養塩の 増加は主に底層に分布しているが,その一部は有光層の 深さにまで達している(届くことができる)(図2)。一 方,図3に示された各月のChl.aの分布から,冬の表層 での増加と夏の亜表層での増加が特徴的である。この結 果,黒潮起源の栄養塩は基礎生産に利用される可能性を 示唆しているとともに,黒潮起源栄養塩の影響は限定的 であることも示している。また,図には示していないが, 黒潮水に含まれている3種類の栄養塩の濃度比がもとも と東シナ海陸棚域における海水中の3種類の栄養塩の濃

図2 PN断面におけるケース '+30%' と標準ケースの硝酸塩濃度 (mmol⋅m⁻³) の差。Hはhigh, Lはlowの略である。破線は有光層の深さを示している。

Chl.a (mg·m⁻³)

図3 PN断面におけるケース '+30%' と標準ケースのChl.a濃度 (mg·m⁻³) の差。破線は有光層の深さを示している。

度比と異なることから,黒潮起源栄養塩の供給量の変化 はもともと陸棚域に存在している栄養塩の基礎生産への 栄養にも影響を与えている¹⁵⁾。

4. 終わりに

本稿では、数値モデルにより見積もった黒潮流域から 東シナ海陸棚域への栄養塩供給量とモデル実験で確認し た黒潮流域を起源とする栄養塩の増加による基礎生産へ の影響を紹介した(なお、モデルから得られた結果に関 連する他の内容は別の論文¹⁵⁾を参照されたい)。

黒潮は陸棚縁に沿って流れているので,陸棚域への栄 養塩輸送は黒潮を横切る方向で起こっている(図1の FAとFB)。一方,黒潮に沿う方向での栄養塩フラックス(図1のFC)もあり,その量は黒潮を横切る方向で の栄養塩フラックスより10倍以上大きい。このような 膨大な栄養塩フラックス(図1のFDとFE)は黒潮と ともに日本南方海域と黒潮続流域に輸送され,黒潮流域, とくに黒潮内側域に位置する日本南岸の内湾や内海での 基礎生産に影響を与えている。今後,黒潮流域から黒潮 内側域,さらに内湾や内海への栄養塩輸送の実態とそれ に関連する物理過程を明らかにする必要がある。

本研究によって、東シナ海における黒潮起源の栄養塩 の基礎生産に対する影響は確かめられたが、その量の評 価、とくに長江起源と台湾海峡起源の栄養塩の陸棚域に おける基礎生産への貢献とそれらの定量的な比較はまだ できていない。今後、異なる起源の栄養塩の沿岸海域に おける基礎生産への貢献を定量的に見積もる必要があ る。

謝 辞

本研究は文部科学省科学研究費補助金(課題番号: 21310012)の助成を受けたものである。

参考文献

- Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A. C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S. A. and Stouffer, R. (2004) Response of ocean ecosystems to climate warming, *Global Biogeochemical Cycles*, 18, GB3003, doi:10.1029/2003GB002134.
- 2) Behrenfeld, M. J., Worthington, K., Sherrell, R. M., Chavez, F. P., Strutton, P., McPhaden, M. and Shea, D. M. (2006) Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. *Nature*, 442, 1025–1028.
- 3) Guo, X. and Yanagi, T. (1998) The role of the Taiwan Strait in an ecological model in the East China Sea. Acta Oceanographica Taiwanica, 37, 139-164.
- 4) Chen, C. T. A. and Wang, S.L. (1999) Carbon, alkalinity and

nutrient budgets on the East China Sea continental shelf, *Journal of Geophysical Research*, **104**, 20675–20686.

- 5) Zhang, J., Liu, S. M., Ren, J. L., Wu, Y. and Zhang, G. L. (2007) Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and reevaluation of budgets for the East China Sea Shelf. *Progress in Oceanography*, 74, 449–478.
- 6) 速水祐一, 碓井澄子, 武岡英隆 (2004) 瀬戸内海における窒素・ リンの存在量とその長期変動, 海と空, 80, 75-78.
- 7) 武岡英隆(2006)豊後水道における外洋起源栄養塩の供給機構 とその生態系への影響,沿岸海洋研究,43,105-111.
- 8) Sakamoto, T. T., Hasumi, H., Ishii, M., Emori, S., Suzuki, T., Nishimura, T. and Sumi, A. (2005) Responses of the Kuroshio and the Kuroshio Extension to global warming in a high resolution climate model, *Geophysical Research Letters*, 32, L14617, doi:10.1029/2005GL023384.
- 9) Guo, X., Hukuda, H., Miyazawa, Y. and Yamagata, T. (2003) A triply nested ocean model for simulating the Kuroshio -Roles of horizontal resolution on JEBAR-, *Journal of Physical Oceanography*, 33, 146-169.
- Wang, Q., Guo, X. and Takeoka, H. (2008) Seasonal variations of the Yellow River plume in the Bohai Sea: A model study, *Journal of Geophysical Research-Oceans*, 113, C08046, doi:10.1029/2007JC004555.
- Matsumoto, K., Takanezawa, T. and Ooe, M. (2000) Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. *Journal of Oceanography*, 56, 567–581.
- 12) Aksnes, D. L., Ulvestad, K. B., Balino, B. M., Berntsen, J., Egge, J. K. and Svendsen, E. (1995) Ecological modelling in coastal waters: Towards predictive physical-chemicalbiological simulation models. *Ophelia*, 41, 5-36.
- 13) Skogen, M. D., Svendsen, E., Berntsen, J., Aksnes, D. and Ulvestad, K. B. (1995) Modeling the primary production in the North Sea using a coupled three-dimensional Physical-Chemical-Biological Ocean Model. *Estuarine, Coastal and Shelf Science*, 41, 545-565.
- 14) Skogen M. D. and Søiland H. (1998) A user's guide to NORWECOM v2.0, a coupled 3 dimensional physical chemical biological ocean-model, In: The NORWegian Ecological Model system, Bergen, Institute of Marine Research, 42. Technical Report Fisken og Havet 18/98. (http://www.imr.no/~morten/ norwecom/userguide2_0.ps.gz).
- 15) Zhao, L. and Guo, X. (2011) Influence of cross-shelf water transport on nutrients and phytoplankton in the East China Sea: a model study. *Ocean Science*, 7, 27-43, doi:10.5194/os-7-27-2011.
- Chen, C. T. A. (2009) Chemical and physical fronts in the Bohai, Yellow and East China seas, *Journal of Marine Systems*, 78, 394-410.
- 17) Guo, X., Miyazawa, Y. and Yamagata, T. (2006) The Kuroshio onshore intrusion along the shelf break of the East China Sea: the origin of the Tsushima Warm Current, *Journal* of *Physical Oceanography*, **36**, 2205–2231.